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PREFACE

During recent years the importance of the subject of statistics has
become increasingly recognised and it is now studied not only by
statistical specialists but by scientists of many different disciplines.
It has also been recognised that the subject is a suitable one for |
schools as well as universities in that it can provide, at quite an early
stage, a unifying link between the theoretical and practical sides of
many forms of scientific training. This book is an attempt €o)put
across the main principles of statistical methods to studesits who
are fundamentally interested in the practical apphcatmns of the
subjeet and are not so much concerned with the phﬂoaophmal bases
of the concepts used.

The choise of what to include and what?$6 omit has been
difficult. Primarily the aim has been to give akelectlon of the more
esommonly used tools and not tmpnmdﬁ.ﬂlwmpleﬁg sat of statistical
tools for use in each and every mtua,islqn The student ig then left
in the position where he should bp.able to appreciate what further
tools are needed and he can ugefully profit from a reading of the
more advanced books on the(subject that are available. To have
included every techmqlxli:n ‘common use would have lengthened
the present book very gon derab]y and destroyed a greater part of
its planned utility. (Henee experienced readers must not be sur-
prised if some of t%en' trusted favourites are missing from the pages
that follow.

To some e}bent the choice of topies has also been mﬂuenced by
the des:re 40 keep the standard, and the amount, of mathematics
down«t,a ‘a minimum. The basic mathematics required, with the
exception of one or two symbols that are explained in the text,
is roughly that of ordinary level in the General Certificate of
Education. Even this standard is not necessary for studying the
earlier chapters and it is quite feasible for the book to be taken by -
schools in portions over a number of years. A% a university it
would most likely be a suitable basis for a one-year course of
lectures to seientists who are not mathematical specialists.

- There are numerous examples in the text, most of them requiring
a certain amount of caleulation. One problem has been to decide
the degree of acouracy to which these calculations should be
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" carried.. Readers will probably have a wide variety of computa-
 tional aids at their command, ranging from slide-rules to calculat-
: mg machines, and having very different acouracies. All results
" quoted in the text are accurate to the number of figures given,
- buf-this aceuracy will not: always be attained with four-figure
logarithms and even less often with a slide-rule. The final chapter
is the only one where serious difficulties are likely to occur. In this
- chapter the common form of slide-rule is definitely not accurate
enough, although reasonable results should be obtained with four-
- figurelogarithms. ‘O
- The data.given-in the examples and exercises havé béen drawn
from a¥ide Tangs of réports, magazines, journalsard books. In
Mty cages thie original data have been greatly, tampered with and
reductions, groupings or simplifications ha%é been made before
using the data to illustrate a particular point. In these cases the
source has not been given for foar o miisrepresentation of the
original author’s intentions. Where j;he data are substantially in
the original Sorm dns aelmevlsdgendent has been made. Tables 9.4
and 111, giving the normal and ¥? distributions, have been ex-
tracted from rather fuller tables in Biometrika Tables for Statisti-
cians by kind permission-of Professor E. 8. Peargon, the editor

of Biometrika. RA .
- It is s pleasure 4 acknowledge the great help received from

many quarters in'the preparatioi of this book. Students on whom
methods.of presentation of various topics have been tried out have

- q,et-gd,- -'z?;l_béif -'MMttmg!szﬁggnea-p' igs. Mmy_@]lg_g,gqea i_ia.ve
- h___‘@_,__mglto “fo&mgﬂdmould _the ideas and opinions that find

- expuession hare.. Ig;gg;@gg}&iﬁ{@;@fmr&ﬁ‘ﬂﬁaﬁ read ‘and
- Sommentod ML&MMnH&myhumﬁB‘ﬁ&maﬂy valuable

( long with checking of the
) . c'é}l&jl‘;t;‘i—t;ns_and' Pproof-reading was given by Miss Sonja Tghgmas.
Fma,]ly the Cambridge University Press have carried out the type
ﬁttmg _. qf & far from ©ASY manuscript with considerable skill.
ﬁvertheless,the ulinmate:respoﬂs_ibﬂity for the contents of the
. book mustrest on the author and any comments from readers will

P.G.M.
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THE SCOPE OF-STATISTICS

1.1 Broadly speaking statistics is the numerical study of a pro-
blem. Unless the }groblem can be reduced to quantltles measurable

concerned with the countmg of individuals or the measurmg of
items. Tts ramifications are far wider than that ‘and include’ the
study of what are the rlght ﬁgures to eollect and the correct inter-
pretation to be placed on them. The politician trymg to. envisage
this ifects-of different forms-of taxation needs tg-know the esti-
mated yields of each form of taxation proposed;amd the local town
councillor must be able to appreciate how th&}ocal rate is split up
into various headings. The citizen, todag }grg%lltég&d with White
papers, Kconomie surveys and a multlta,ide of reports not only from
the Government but from banks, «nsurance companies and in-
dustrial firms, all of which pre@&nt and argue from, a mass of
statistical data. An understanding of statistics and the treatment
of numerical data is therefore'essential and only by a patient study
of the part played by ‘figures in such reports can policies and
decisions be understogdand, if need be, criticised. Tt is necessary
to recognise, moreoyer, . the power and the limitations of statistical
arguments, to leam how to obtain the full information from a set
of figures a.n({how to avoid the pitfalls which await the unwary.

If the ﬁgut’es are worth analysing at all they are surely worth the
form of-@nalysis that yields the maximum amount of information.

Thete ¥ite a large number of statistical tools, and to use a steam-
hammer where a light tap is required would be not only wasteful
but often misleading. No one universal rule can be made and both
knowledge and experience must be gained if the best possible
results are desired.

The whole subject of statistics has taken tremendous strides
since the beginning of the century, and the recent war gave a big
impetus to the further study of statistical methods, since the use
of such methods often lead to large savings of tine, materials and
personnel. Before a study of the basic methodg of the subject, a

I ' ’ . uME
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numberof ax&;ﬁples will be given to ilustrate some of the many

- fields ‘of its. application. ‘Whilst these examples are in no way
exhaustive they are nevertheless instructive in that they give some

NP idea of the multitude of problems that confront the statistician.

3 MP‘%G&BMY to have accurate statistical

12 Government. For effective government and the shaping of
istical knowledge of the
<gxact eomposition of the population, From this need Fis ‘sprung’
. ‘in'the first place the compulsory registration of births, martiages

‘and deaths, and secondly the cengug which was inaugurated.at the
- time of the Napoleonic wars and is normally taken in GreatBritain

oncéinevery ten years. The information derived from these sources
. ‘glved an instantaneous picture, as it were, of the poi)ﬁiation divided
. upby.age and sex. This is needed in order to se}a,’fbr example, haw

“any schools are required, how many workers'there are, and how

er Productive

Wmm%dmhm\m;po_" longe

Jrorkers; estimates can then be made 6f'the number of young men

av&ilal?le' for call-up into the Armied-Forces ab a given timie. By
co]lectmg d&haﬁiéibf%ﬂﬁﬁgyo%?ﬁﬁ%ibns {(number of rooms, washing
f_amht;ea-_and 80 on) the census also gives valuable information about
the social well-being of the'nation, -

. e in Great Britwin utilised Jor agriculture

* Table 11, Acreay
eSS i Jume 1951

oD ‘_ . : . * Artea in

’\ _Ty_peufagr_ictﬂtm _ th:‘};ul::u_l
07 Arabloand under crops . 12,202
. ’\" / o Arable land wndep grags’ 5,796
B\ N\ o Permarient grassland - 13:134
RN\) - Rough grazing. 17,066
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give you some ides of the vast amount of information used by the

government in making declslons concerning the day-to-day policy

of the country.

1.3 Industry. ¥The wealth of the country does not depend
primarily on the government. It has to be generated elsewhere,
and industry is one of the main sources of that wealth. The pro-
duction of marketable goods of adequate quality provides in-
numerable statistical problems of which the following are typical
examples. <

7+ A manufacturer is making electric hght bulbs and according ’oo‘

’%he design and specification the bulbs should burn for 200¢hr.
Due to slight differences in manufacture the bulbs will not all have
exactly the same length of life, but they will haye & ‘minimum
length of life. A bateh of 500 bulbs has just been produieed and the
manufacturer is going to make tests in order td.see whether the
bulbs are up to the standard and have a bm’sm'ng life of at least
2000 hr. Quite clearly he cannot test eve ]_aI' b by meaguring the
time it takes to burn out for there would, then)i)e none left; for sale.
Henoe it is essential to use some method whereby a few of the
bulbs are examined and’ mferences made from them about the
" whole batch. If the whole bapeh could be examined it would be
possible to make & categovieal statement such as ‘the bulbs all
have a life of at least 2000°hours’. As only a few of the bulbs can
- be examined the statefient must take the form ‘the bulbs almost
certainly have a ]erxof at least 2000 hr.” or ‘the bulbs are very
unlikely to have a‘ilfe of at least 2000 hr.’, or something in between
these two statgments But provided th&t the selection and exami-
nation of the Bulbs is in accordance with the prineiples given later,
then thelatter forms of statement may give as much information

as isGreqiired at a fraction of the cost of a complete examination,

which in any event is an impossibility inh this case. A similar
gitnation would arige in the determination of the breaking strength
of & batch of steel wires, where a test destroys the wire, and the
desired information must be obtained by performing tests on a selec-
tion of the wires. Such a procedure is necessary in order to check
whether the quality of the product is being maintained, as a faiture
could be dangerous and might well result in a falling-off of sales.

Industrial problems also arise in the trial of new processes,
as in the following example Two batches of cloth are made by

I-2
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e dJEerentprocesses, 4 and B, and the resistance of the cloth to acid

" initested by taking four piecés as samples from each batch and
 meaguring the length of time for which they resist the acid. The
results, in hours, of 4 typical experiment were as follows:

. Process A Process B

© Pieoe 1 s T 438
Cog 407 417
3 416 - 431

1 ar2 44.2 N\

Process B is a new process and the question is whether i 18 better
than Process 42 Tt is true that all four reguits for B are higher than
those of 4, but only just. Notice that the four vafues for B vary
much more amongst themselves than do thoge fot A. This suggests
that the samples from B are not o consistent’ as those from A.
The final decision must reconcile all thesefaetors and this type of
" problem is analysed in detail later in thi$’book. ./

7

vt , s ¥ measures are constantiy
- being deviged. The‘oi‘ﬂy_sound basis for ju
effoctiveness of sagpestod Precautions for the ror
accidenits is & sttiatioalons T o=

much-thore traffic op may have more traffie

pq;ﬁ!&,-period for accidents, O again, 4t one junction all the traffic

4y go straight acrogg whereas at th, .
Cmake 5 right turn. é other a large Proportion may
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Statistical work is also mecessary in solving the problem of

traffic congestion in towns. T'o make vast and expensive alterations '

to the system of traffic confrol without making sure the alteration
will have the desired effect is both useless and wasteful. For
instance, the common type of roundabout will take only a certain
amount of traffic per hour, and any attempt to foree more traffic
to use it will only result in large-scale congestion. Hence before
ingtalling a roundahout a detailed study of the volume of traffic

coming into the junction at various times of the day must be made. /

If this is not done a hoped-for mpmvement could have the opposﬂ:s
effect. )

London and most other eities have large and complicated net-
works of public transport and, although such networks iy appear
somewhat haphazard to the uninformed, there is gcope for an
enormous volume of statistical work in the background. The
organisers want to know how people get to WOI‘k{QI to the shops, or
to places of entertainment, and how long it ta'&kes them ; they want
to know the effect of alterations in fares.an. F)?%E};.lgIEBCEIPtS and on
the pattern of the journeys. All'these thitigs and many more must
be studied in order to choose the most useful routes, and arrange
the most convenient time- ta:bles’ tongistent with keeping the
running costs as low as posmble

2\

1.5 Insurance, The ¢ ﬁ':ér; comes into even more direct contact
with statistics in the field of insurance. For example Mr 4 insures
his house a.ga,mst d&mage by fire by paying an annual sum or
premium to an jnsurance company. The amount of this premium
is not arbitrafy} but is governed by the numbers of fires that do
oceur in hph%es of similar type and the amount of damage they
cause, which are factors that enable the finanecial risk of a fire at
Mr A% house to be directly assessed.

An’alternative form of policy is that for an annuity. Aceording
to the prospectus of one large assurance office they will grant an
annuity of £8. 9s. 4d. to a man now aged 60 if he will pay them
£100. This means that if Mr B, now aged 60, were to pay over to
the office the sum of £100 they would pay Mr R the £8. 9s. 4d. every
year for the rest of his life. If Mr B dies in two years time he will
receive two payments, but if he lives to be a centenarian he will

receive forty payments. In order to determine the amount of the

annuity the assurance office must have accurate information on
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 the nuinber of ‘years 4 ‘man aged 60 is likely to live, and on the
rate: of interest; ‘they may:expect to earn on invested money.
A stady: must therefore be made of the distribution of ages at

- desith of all:men ‘over 60 in the past, and examination made of the

~ rates of interest that are obtainable on various forms of investment.

| Thon the rate of annuity i3 caleulated by spreading the risks over
- “all.men aged 60 who.buy annuities.

_ 1.6 Market Research. All the goods and services available to
the public have to be shown or demonstrated to them, i)order
that' people shall know of thir existence, The demand has to be

- Teeasured and the reactions of the public noted for futute develop-

. ents.. Imagine that, a firm is putting on the ma.i-léet a new type
of washing machine. Obviously it is desirablety know what will
be the: approximate demand for the machizie) If the demand is
only going.to be.of the order of 160 Iﬂ&(‘:hinea a'week it is very

- wasteful to set:up plant and machinery designed to tum out

. washing machines at the rate of 5000 a week. The concept of
gauging _.the damaﬁﬂl'ﬁsiihrﬂfé’&if&iih the basic problem in market

' reseamh In its simplest form it is answered by questioning a
propt?rtmn--of -households 80 their likelihood of purchasing o
washing machine of thi§\kind. A similay procedure is followed

4l) 15 made on the results
; tmoa,l eXPEFIfeHts: ™ Or in
-1 :;.eﬁ“éaﬁﬁg?’mﬁ‘ﬁﬁ*iﬁugs on
Werit'is necessary to eXpregs
e Numerioal-gogle, -



THE SCOPE OF STATISTICS ' 7

personal impression such ag ‘I think that Drug 4 is better than
Drug B’ by a well-defined and clear-out statement of the form
“Drug A is 40 %, more powerful than Drug B’. Everyone argues
from general impressions, and the art of conversation would be
very difficult if sweeping statements such as ‘aeroplanes are more
dangerous than cars’ were inadmissible withoub supporting
statistical evidence. Nevertheless general impressions are often

misleading and sometimes untrustworthy. For example, people ,

are apt to say that they are always getting wrong numbers when
using the telsphone. A statistical count would, in all probability,
show that the proportion of wrong numbers wag in fact very(sinall.
As is 50 often the case, the times when things go- wrong\dre re-
membered but the numerous times when all goes well argforgotten.

The examples of the applications of sta,tisticﬁ‘?given above
illustrate the usual pattern of a statistical investigation in which
there are four phases, namely: \\

(@) Statement of the problem to be'invesﬁgated.

(&) Collection of the data at\aﬂe\g%r%%ﬁgp@gqgaﬂahle sources
or by performing experiments. o

{c) Analysis of the experimental ¥ésults or data.

(d) Interpretation of the resuls‘of the analysis.
Thus to see how many schoolg‘will be needed in Manchester in 1960
is to state the problem as(ih'(a). Next, from census figures and
local figares relating to movements of families in and ot of the
oity the numbers of ehildren in various age-groups expecied to
be in Manchester dh 1960 must be obtained. This constitutes (B).

The data musj:»:gu}v} be sifted down in order to produce the com- _

prehensive ‘ﬁ%‘i]:l‘é required for stage (c¢) and finally in stage (d) the
decision ig\ade on the number of schools required.

Or a,gzim the insurance company in section 1.5 wishes to find how
much Annuity it can grant for £100 to a man aged 60. This is the
problem under (). Next, the company collects together all the
available information as to how much longer men aged 60 have
lived in the past, together with the rates of interest at which the
company is likely to be able to invest its money. This ia stage (b)
and leads to stage (¢), the sifting of this information to give the
required figures. Since there may be alternative estimates of the
annuity from the analysis in (¢) the interpretation of the resulis
under (d) will require the exercise of judgment and experience in
order o decide what annuity can be offered. :

JUNEEENFE LA S —
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-In the remainder of this book these subdivisions of any investiga,
tion will be discussed at: some length, and the powerful aid that
statistical methiods can give to clear thinking and rational decisions
- will be demonstrated. Since each problem that turns up will be
alightly different from the next on. » Practice is essential in order
to acquire facility, and the student i urged to work through as

many of the examples and exercises ag is. possible,
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2 R
THE 'COLL_ECTION OF DATA

2.1 In the opening stages of a statistical inquiry the investigator
will need to co]lect & large amount of raw material or data from
w}nch ’oo extrac‘b - the qua:ntmes relevant to the purposes that he,
in a gra.ssla.nd area counting the number of shoots of Soladbgo
glaberima per square foot, or the traffic investigator maysha,ve to
count traffic at & busy crosging, or the agriculturalist may have to
collect data concerning the quantity of fertiliser applied to wheat
crops on all the farms in Sussex. The method acnd care given to
the collection of this raw material is mpoﬂams The strength of a
chain lies in the strength of its weakest l{nk and it is useless to
reach intricate conclusions fyom desuftiteenty orgimaccurate data.
Before any form of- elaborate a.nalyms it is essential to. know the
limitations and aceuracy of statistical material and to be aware of
the kmd of e errors that can arlse “Tn this chapter two of the most
Gomimon sourees of data.wﬂl he conmderedm some detail. Thegeare:

1. Questionnaires. The. dﬁi:& here are obtained by forms designed
by the statistician a {gompleted by the general public.

W 2 Observations. The data here are collected by the investigator
himself recording/the results of a series of observations but not
necessarily relying on the public at large for his information.

2.2 :Que’&ionnaires and their completion have to some extent
-becqngé’ﬁ part of the daily life of the eitizen in this country, though
thiere”have been for some time special forms concerning each
citizen’s history. For example, his birth must be registered at a
local registrar’s office, within 42 days, on a form somewhat similar
to that shown in fig. 2.1, This registration is required by British
law, and on marriage and at death similar types of form have to
be completed. These forms provide the raw material for a large
number of studies made by the government into the size, age-
distribution and marital status of the population. The record of
a birth, marriage or death can be inspected at Somerset House in
London, where the records have been kept since this type of
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 registration became compulsory in 1874. Tt is sometimes necessary

- to prove one’s age {in order to sit for cortain examinations, for
-exazple, or to receive a legacy conditional on being twenty-one)
and the birth certificate provides a ready means for this purpose.
However, these records of births, marriages and deaths are not
always by themselves sufficient for many statistical problems.
They give no idea, for example, of the population of a town at a
given time or-of the occupations followed by its residents. To
snswer such questions some further source of informeticn is
necessary and some more continuous check on movements .would
‘therefore be necessary. This was attempted during the Jast war by
means of identity cards which were useful also in operating a fair
gystem of rationing. In normal times, however;{g:hig continuous
check is regularly made by carrying out a oansiie.

Name' Nameyy x\ ’
e | and and™\ Pro- Date of | Signat
Whien , ~ - areare
. bom | Neme.; wiexibr sutilmery 0T6AN | fossion | rogistra. of
Tl of sarsame | of father tion registrar
: father |%fmother :

Ra
i:..

Bk 2. Abbreviated form of a birth certifuaty
TN '
23 ._A- fsgn'gu:s‘- 1§ & very comprehensive affair and in peace time is

- varried(out simultaneously throughout the length and breadth of

Gredf ﬁta.in-e_very ten vears. The last census wag held on 8 April

‘.avery.-me;ﬁber of his household. There were in all twenty-five
-questions ‘on. the schedule but many of them did not apply to
everyone. The questions fell, broad} ing, i wing
o eions Tl broa iy.épeglfmg? into the follo

1. Name... ... Doty '.2..-.-Séx. | | |

o4 Whether mﬁrﬁed, eté.
:-1_6. ._ Place of birth and nationality.
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Great care is taken to ensure that census schedules are filled in
correctly and that everyhody completes a schedule. Many people
are away from their normal place of residence on the day of the
census. They may be at work elsswhere, or travelling, or at sea,
or on holiday, but it is essential that they are all brought into the
census. In 1951 gsome 50,000 specially trained enumerators were
employed to deliver the blank schedules, to explain to householders
exactly what had to be done and later to collect the completed
schedules from each household. Strenuous efforts were made ol
capture the interest of the people by means of broadcasts and newg-
Paper articles, and to drive home the importance of correct comﬁ‘l&-
tion of the schedules. As a result of all this work the final résults
can be taken as being absolutely reliable for most practfca{l purposes. -
2.4 The information in g census is obtained fromn, the answers to
the que}s"t—ia__xlg(h}:p the schedules. Clearly the effigiency of the census

‘depends largely on how those questions. are framed, for bad
questions can produce Wmngwmmaﬁm;yﬁg impplies to all
inquiries made by questionnaire, and in'the design of any statistical
form there are certain rales which mist be followed if reasonable
results are to be obtained. Briej.iji',-’these rules are:

" (@) The form should be as_eoncise as possible and there should
be the minimum number ef. questions necessary to obtain the
required information. \\ .

(b)) The questions ghould be simple, and unambiguous in their
possible interpretation.

(e} Questioqa that are likely to arouse strong feelings and hence

attract inacogtate answers should be avoided. For example, asking
2 man if he has any physical deformity is quite likely to produce
an mcqrgéé't answer. : '
1) “The form should be made g attractive as possible to the eye
by méans of a suitable layout and clear type. :
\»(e) When asking for confidential information in a voluntary
inquiry the person’s name should not be put on the form unless it
is esgential. This precaution is likely to produce accurate replies
to the confidential questions,

To illustrate the method of framing questions suppose that it is
desired .to make an estimate of the total mileage driven in this
counfry in & year. A number of different methods have been
suggested and the first method to be tried was based on the total
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consumption of petrol in the country. A suggested alternative
method was to have a questionnaire completed by every motorist
when. renewing his or her. driving licence. The form (fig. 2.2)
appears simple enough at first, but in order to assess its effective-
ness some of the above-mentioned criteria will be applied. The
form is fairly concise and the number of questions asked, thirteen,
is reagonably low, especially as it is unlikely that all thirteen
questions would have to be answered by any one. person. Thus
condition (@) seems reasonably well satisfied. The form caniot,
however, be said to be free from ambiguity. First it asks for.the
name and does not make it clear whether the christian nanie'of the
driver is required, as it is if the sex of the driver is o be'deduced.
Secondly it is probably unnecessary to ask for the £All hddress, as
in many cases only the town or county of residericéis required for
the purpose of further analysis. Many drivers will omit the county
unless specifically asked to put it in, and thiereby give a great deal
of extra. work to the investigators. Next ‘the question asking for
the age is not precise as the age giveinby the driver may be (i) age

last birthday, (i) 6P ERE R, O (i) age to nearest birthday.
A person who gives his age as 19&6&1‘3 would be, under method (i),
between 19 and 20, under (ii)y between 18 and 19, whilst under (i},
between 184 and 19}. The question would be better if it asked
tnther the date of bil:th’ or the age in one of the three categories
Just mentioned. ﬁrﬁher trouble can be anticipated from the
answers to the Question on employment. Differences of personal
Opinion may, 16ad to the same job being called by a multitude of

nam:s En.ﬁ‘plbyment is probably the wrong word to use in this
question. s For instance, a coal mine em loys lar

men;&' Yy etenae, Ploys large numbers of
Qtia«mine might deseribe hi

Person in question or not, ang not the mg .
5 1. © il
passenger. Thus congide eage traversed ag a

under conditions (3). I'fble Tprovements could be effected
i questionnajre ig
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a matter of judgment in layout, bearing in mind the cost of printing
or reproduction. Clear bold type with a mmimam of small type
or footnotes should be aimed. at. Taking all thege criticisms into
account the form can now be re-designed as in fig. 2.3. To obtain
the best results some sort of accompanying letter, explaining why
the survey is being carried out and how the driver can help by
¢ompleting the form, will be necessary. '

Name: _ Address;

Age: _ . .
Employment: : : ' \' \
Bus & "’.’;’ .
or |/Car Motor
1 K eycle
QIEY S Y
Approximate mileage you have driven in past week ,'\\:
Approximate mileage you have driven in past montly ¢
ijproxima.te mileage you have MWSH%%%‘: Sryperg.n
— . ~
Fig. 2.2. Specimen form
Name: © S Mr/Mine/Miss
Age last birthday: ...< Couniy of residence:
. O
What ia your occupstiont \\ e
\ " ‘ I:rm Car Motor
» o |tomy vele

)
APPrOXim%t'f%.iﬁleage you have driven in past week
Appro;hﬁ.;{,}e mileage you have drivenin past month
A}@x;ﬂatﬁ mileage you have driven in past year

{Note that the mileage to be entered is the mileage that you have actually
Ld.!'iven whether you owned the vehicle or not)

Tig. 2.3. Re-designed form

25 The foregoing discussion has shown thab the dmg@g of any
questionnaire entails a great deal of thought and that it is iﬁﬁfﬂ!}y
to imagine beforehand the kind of answer that each question will

Provoke and whether that answer is the one that is required. It1s,
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therefore, 2 good pla,n to try out & quastlonnan-e on a few people

geem simple aend clea.r cut to the &uthor can qm‘oe eaaﬂy prove a
stumbling-block to users of the form. If a trained enumerator is to
aid people to fill up the form then the questions asked can be a
little more involved then if the survey is to be carried out by post,
but, it must be remembered that the public s less likely to dis-
close confidential personal information if the survey is carried out
through an enumerator than through an impersonal medmm \

26 A large amount of stat:lstlcal data is obtained not by queghon«
"naires bub by the investigator himself going ont into thefield and
counting or collecting items. This is the source desefibed earlier as
observations. Whatever the type of data it is eaaentlal to adopt a
system of collection that is both logical and tidy, so that the data
will still be understood at some later date\\Results should there-

. fore always be ed in a notebookhwkggg_ soraps of paper
are easily lost The heading of each page must give details of the
ntﬁratfpﬁgé tgggther with the date and
iteros T co ctmn Tt is Very. tempt at 'tbw_t}m_‘ﬁf.
e nat this information is 8o obvmus that 113 need not be
: mcm magperial is not used for some time such &n '

- omission may be TEZRIUAL eapocially 14 Targs amount of other
aaterial has been uSed or collected meanwhile, Records should be
M‘Wiﬁh’"é, ShAEEP Pencll, as K is very hable to smudge and
become unreddable, especially in outdoor fieldwork. If the data
a.re reqlm:eslfor future reference it should be converted to ink later.

2 v i 'hae recordmg of the da,ta, in & notebook is quite straaght«
'forward if & gygtematic method 1 18 followed. Suppose a series of
~barometer readings is bomg made every quarter of an hour at

) thres different levels in a tall building, Three eolumns are needed,
the ﬁrs‘s for t.he tlme the seeond for the level, and the third for

figures would then be placed

in the specimen page shown
oot at & future date would be
anB and the_) resulés would

+.-able. to understand what had been
Iea,v no rc-om for amblgmines

: @bed 18 catned out completely
; ._oor axpemmen.t suppose that it
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is desired to compare the weights of acorns obtained from three
different oak trees, To this end fifty acorns are collected from each
tree and subsequently weighed. The data will now consist of a
series of weight measurements divided - into three categories
according to the tree from which the acorns were collected, .and
would be recorded as shown in fig. 2.5. The record states clearly
where the acorns were obtained and the results of the weighings.
No set of raw material should be accepted unless it contains, as
in thig example, all the relevant information. This experiment_ig~,
carried out in two stages: the acorns are collected outside and them
brought indoors for weighing and recording. Sometimes the Whale
data is colleeted and recorded outdoors as will be shown by the
hext example. o o .

&
< N
o\

l\ Blackbush Grammar 8chool 15 Oct. 1956 _
Lovel A Ground floor  Level B _Seord floor

Level G Fifth. foor of main buildi N\ '
dbrgulibrary.org.in
Roadings of ba.ro_meberwix T, q? mm'cu.ryy &

*

Time Level Reading O Time Level - Reading

™\

10.01 A 767 O8N
10.07 B 761 '
10.12 C 69,0
10.16 A 766\,
10.20 B Vi1
[t N
Fig., 2;4. Page from observer's notebook

.

Woights oQa:om; collosted at Blackbush, 17 Oot. 1956 (sroights in grams)

Tree &t eorner of Wood Lane and Blenhoim Streot g;

:'Fi'.éewin headmaster’s garden o :(13
<H™ S 31
"Tree in sohool playing field by ericket scoro board ;-i

Fig. 2.5, Page from obgewérfs..nptebook_

29 Imagine that your local town is qutémplqting the introd}m-
tion of parking restrietions in the main street as part Of' & carnpaign
" to relieve congestion. in the dentre of the town. It is desu‘ed.t.o
have some idea of the amoimt-and nature. of the traffic entering
the town during the main part of the day. The traffic passing two
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points during the busy period of the. day is therefore counted
each day for s week. The necessary observers are stationed in
pairs, relieving each other at fairly regular intervals; a specimen
page from the notebook of one of the observers is shown in fig. 2.6.
It will be noticed that the counti J laciz_‘;gﬁt_{'_qkespin
groups of five, with every fifth stroke put cross-ways j;_g__ipa_.kq
sounting easy. Thus thirteen cars and seven lorries are recorded as
‘m%’ni;bsewed in the period from 10 to 10.15 a.m. Before
eounting is begun some decisions have to be made to remove any
ambiguities that may possibly arise. For example, it must be
decided beforehand whether a trader’s van is to be couhted ag a
lorry or as a car; and whether & light motor-propelled bicycle
should be counted as a motor cycle or omitted albggether.

|
o\

Date 18 Oct. 1956 ' Thive

| Place  Milibridge Rd. G.P.0. 10-10.15 wifn 10.15-10.30 a.m.
Carg ' : T P 111
Lorries s wwwed braulib}'ﬂr}qﬁ:&ﬁ?‘
Public Service Vehicles 111 n
Motor cyeles Y . {111

—— Nk
S Fig. 2& Page from ohserver’s notebook

When the nat

requiretaerts and that no unforeseen sna,

of the ek all the debw-ean be, sollated ready
" stage it will consist of laroe numbers of oo

Mﬁ@dﬂmiﬁ@m& reduce this
gures to g foy manageable ones to bring out the

%5 Of tuterest. This part of T Investigation will be
next chapter. o

: SUGGESTED-READING '
It is suggested that some or all of the followi and
lots should be read in order to goe ind of g o ond parmph-

see the kind of raw material -

monly used in statistical work, Mogt of ' i
. - - Most of th, 1 .

found in a good public kibrary, - | e lttf:ms hs.ted will be
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1. (Her Majesty’s Stationery Office publications):
Monthly digest of Statistics. :
Board of Trade Jowrnal (weekly).
Eeonomic survey (anmually). - : _
Ministry of Labour Gazette (monthly), :
Eegistrar General’s Statistical review of England and Wales {(annually).
Preliminary report on the Census of 1951, . -
1%, sample results of the Census of 1951.
2. (Other publications): )
Monthly bulletin of Statistics (Statistical Office of the United<{ ™
Nations). O
London Travel Survey 1949 (London, Transport Executive). <)
Poverty and the Welfare State by B. Seebohm Rowntree a.];ld\ﬁ‘t. R.
Laver (Longmans Green, 1951}, P

EXERCISES ‘
The data obtained in many of these exercises will be needed for numerical
work in later chapters. As many as possible of/the exercises should
therefore be carried out. Members of a class could b6 set a varied assort-

ment and the resalts collected and re&gmec} ]Edl'.'~ future use.
LTATTAT N ALy "L‘ary,org,Ln

2.1 1t is desired to investigate the reading habits of schoolchildren in
relation to their age. Design a questionmaire to be used for this purpese
remembering that it is important notionly to obtain the child’s age but
also to subdivide the reading matter into the various types of Literature.
The form can then be duplicated and a survey carried out in the school.
Ta avoid inaccuracies and biased results in the final analysis it is essential
to ensure that everybody pletes a form.

2.2 A gimilar smex'ﬁd ‘tha,t of exercise 2.1 could be earried out to

discover how studeefgs of various ages spend their spare time.

23 Design a\@;}%tionn&ire to be used to find out the method or methods
used by students to come to school or college, and the length of time
taken., %3

AN _
2.4 (Asurvey is to be carried out amongst schoolchildren to find the
number of hours per week that they spend playing various games in
relation to their ages. Design a suitable questionnaire for this purpose
and then use it in your school to obtain the required data. -

2.5 Aspart of a survey concerning the growth of children it js desired
to know the heights, weights and chest measurements of children sub.
divided aceording to age. Collect from all the schools in your neighbour-
hood, as well as from your own, as much data as is possible, remembering
to employ & consistent system of recording.

2.6 Make a series of simultaneous readings of the barometer and
thermometer every day over a fairly long period of time. The readings

o
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should be made at the same time each day. Does thereé appear to be
any form of relationship between the readings of the two instruments?

2.7 Find the amount of space given by a daily newspaper to various
types of news such as foreign affairs, parliament, home news, articles,
crime, sports and advertisements. Do this over a period of time for a
number of different newspapers. {As newspapers vary in size from day
to day and devete more space to certain features on some days than
-others it i best to study each newspaper for a period of a week.)

28 During the association football season, eollect, for one of the wells,
known football clubs the attendance at each match together with the
result of the match, By repeating this procedure for a number of.chnbs
in the same foothall league division investigate whether the ¢fitbs that
have the best match records also have the largest attendarges.

2.9 Collect forty conkers from one particular tree and feasure (w) the
maximum length of each conker, and (b} the weishb of each conker.
Repeat the procedure for another tree and see if\you can detect any
differences between the characteristics of thé%ﬁnkea-s collected from
the two trees, N . .

210 Collect a T iR %’faﬁa%%%igr}specimem of Lesser Celandine
and count the number of petals in edth flower. The procedure can bhe
carried out first for early fioweringplants and thén for later flowering
plante. On the basis of the fgures obtained, can you detoct any
differences between the twortimes of flowering? . :
211 Collect a largs, r\’m;]aar {say 200) specimens of & common flower
such ag a buttercup: "Gount the number of shoots, leaves and petals on
cach plant. Repdah the procedure for buttereups collected from a
Ipcality as different as possible from the first set and gee if you can find
any differenoes.letween the buttercups of the two localition,

212 On'e’day when fish is being sorved in the dining hall
. i ke
mnpghn\lants with the superintendent: to measure the Ienggth of a}lnihe

fish-that are to be cocked. Compare the amount of variation between

p thelemgt.hs of the fish with the average length of the fishes,
213 Examine about 300 pods of. garden .
of peas in each pod. Is this number
variation from one pod to ancther? .

peas and Gotmt the number
constant or do you find much

214 Catch a large number of specimes SR .
. [ pecimens of & commng B0
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215 Collect 100 leaves from each of three Great Beech trees and count
the veins in the leaves. Do the trees appear to show any. d}ﬂ"erenceas
far as can be judged by the number of veins in their leaves? - -

216 Children’s teeth vary enormously in their soundness By question-

_ingand examining all the children in the age range 1216 that sre readily -
svailable find the numbers of whole teeth and the numbets of ‘stopped’
teeth in each child. Does thers appear to be any difference between
boys and girls and between children aged 12 and those aged 162

217 Take a plant for which two types of flower may be distingtished;
like a primrose. Collect each week for a period of ‘six weeks ‘fiffy
primroses of the ‘pin-eyed’ variety and fifty of ‘the thrum-eyed’ '
variety. On each plant count; the number of flowers and use: the data 10\’
determine whether there is any differenco in the plants. over tige.or
 between the two types as judged by the number of flowers. - ‘;': SIS

218 In performing experiments in physics demgnedmdetgrmme somié” B
physical constant the resulta obtained vary amongsh shemiselves. 1o
matter how carefully the experiment is éarried out. To.Hlustrate this
perform the usual experiment to determine the BR‘eaiﬁc gravisy of &
liquid, such as brine, twenty times. Work out the@verage of the _tw_enty |
determinations and find the mexizaws dieduiitbyywhighany single
determination differs from that average. '}.‘}m showa the sort of errot -
that might oceur if the result was based- ona smgle determination.:

219 Repeat the same procedure agyin the prevlous exercise but-this
time meagure the coefficient of expanmon of ‘a-inetal such as eopper
. twenty times and find the ma.x.ligum v&natxon in: a,ny one, determmatlon
from the Bverage. - R Lo
220 The focal length of a\convex lens may be obtamed gslng a Pﬁ 3*;
an object and fixing the image with another pin by means ‘of 1?11_& m; e:n
of parallax. Usmg\the object and Jmage dlstaﬂl ‘the focal leng
0w be found f@m 4o usual formula S= -+ Perfomnthlﬂ exPeﬂme““
' f t alue of
twenty tmcms with the same lens using & Bllgh y different v i
- Object; d:lstacuce (u) each time. Work out the - focal length- fmn}ll;::;a
:._ expﬂr‘ment and see how much variation ocem‘s in g focal: Iengt '
- One experiment, to another, : '
221 Telephone calls vary greatly in hﬂgﬁh :
O post office where there are several kiosls ii

- O%er 4 period of an hour of the times tha
_. ton g;'b +h etiod.
ioks. 1§[anee obtain a series of telephﬂne caﬂtha &h:;f:rnde; grmll i

: another loca.hty and see if these three

222 When a fruit tree, such. a8 an.appl
e of fruit, before putting it-in: ﬂ-“’ :
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= average welghﬁ of the apples and also find a weight above which 90 o
- of the apples lie. Repeat the. sxperiment for an apple tree of a different
variety and see if either.the av rage weight or the weight above which
0% of the apples. lie is different. : '

© 223 Perform the following simple experiment fifty times. A line is
. drawn of 12 in. in length. Preferably each line should be on a separate
sheet of paper. Then by eye make a mark 3 in. from one end, After
fifty attempts measare the actual distance that has been cut off by eye
each time. Now perform the ‘whole experiment a second time, only.on
this occagion measure the portion.cut off as soon as each individnal
mark has been made. Repeat for all the fifty knes. Does the'second
method appear to give more accurate results than the first method ?

224 Open a telephone ﬂjrecbory'at'a Page which does nat;géntam any

€an you account for-any difference you may find ¢

2.25 Take a novel b%gil?@gr wall a#gﬂn author and selecting a dozen

pages count tHY" words iiieach sentence, Repeat the pro-

cedure for & number of differentrauthors and types of book. Can you

notice any differences betweentho s les of th
out by this investigation? . th y ot the anthors thé,t are brought

226 Froma newapéparjébtain the’

' e price of & nﬁmber of types of shares
sath week over a ﬁod of some months. Take oue type of stock or

shars from each of fallowing :
: L WROWING groups: government stock, newspaper
company, oil company, ‘textile company, tin eompany, shippingI:mI::n- :

out this exercise using at least six
ible for the actua) crossing and

' : fo . .
2ebra crossing. Tt is best o CAITy o or 50 yards on either side of the

: cise 2,97, time subdivide a1l
men, w 1 : e Tsons into
> Women, ﬂzlgu(i}::] 1, Making certain that there i a ﬁri3 d:ﬁm]t?on
from Ghﬂdl‘.ﬁfl and that this definition is $he same
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point count the number of motor-vehicles passing in succgssive intervals 1y
of 15 sec. This should be done for an hour and repeated at different = -
times of the day. It will be essential to have at least: two observers,
one of whom is responsible for the time-keeping. If p_o?sible fhere:
should be two pairs of ohservers to act as reliefs. Are thé variations
that occur from interval to interval different for the two points and for
different times of the day? S g

230 Repeat exercise 2,20 dividing the traffic up into various classes
such as cars, lorries and so forth. A comparison could also be made of A

various roads in the neighbourhood.

www.dbg'éulibrary,org}inl .
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3.1 . In the previous chapter the investigations made led to the
- vollection of a large amount of raw material in the form of entries

in an observer’s or experimenter’s notebook. From this masg of
~ figures it is usually difficult for anyone to. ﬂi‘@lg..mollﬁ,ﬁhff.sa‘]_ient
features of the dats without missing important points, Tablé 3.7
Totet I this chapter gives the heights of a bundred \14-year-old
schoolboys, and it is difficult $o pick out very muehfrom the table
- except that the heights seem to range from abdut’50 in. to just
below 70 in. For this reason it is essential to.eondense the raw
figures into some more manageable formy which will enable the
investigator to pick out at once thoge features that he wishes to

pursue ﬁiﬂher._ A first gtep is to compile’a carefully designed table
in which figures posseasig similargdroperties are grouped together.

Table 3.1 Numbers of vehicles on, the Great Noyth Road

Publie
. : 8 serviee Motor
" Motor-oazg %ﬁes vehicles eyoles Total
L4120y s 64 29 788

. AS

Supposg an’investigation hag been made into the number of
motor—_vg@icles Proceeding north along the Great North Road in
& period of 2 hr. past 3 certain point. The raw materia] has been
collected by Posting a pair of observers, and a record kept in the
~Botebook in the manuer deseribed in chapter 2. At this, stage the
notebook congists merely of & magg of figures and strokes in the
various categoties. It ig g fairly straightforward matter to count
ill be i of five if the method gug-
” ord the results ag in table 3.1

o ® 1o Jargest figure i3 on the left and
. - smallest is on the right. Thig ig customa,ry and. makes it ea;iléi
~ to grasp the purport of the table; ially-

numbers of categories. Yoz

odneod o peroentages of tho total. This mun
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a more vivid i impression, to say that 52-3 % of the: vehiocleg, mther
thaii"412 out of 788 vehicles, were cars. Thus table 8.1 WOIJ].d
be replaced by table 3.2.

Table 3.2. Percentage distﬁb'u}tiqn of 788 vehicles
on the Grreat North Road :

Public
service Motor )
Motor.cars Lorriea vehicles cycles - Total
52:3 34-6 .8l 50 100-0 N\
One rule to be strictly observed in such tables is. Gota

number of observatmns on which the pereentagea are based,, in

3. 2 In a count of vehicles, each. obsermtlon goes mto one of a;._ _
number of categories. As another ¢ exa@puewqf;guglﬁ@ﬂﬁﬁﬁmEﬂto B
categories, each adult in & bown might be recorded as to his or her
Warital status, that is whether sin -_ macrrletf WldOWﬁd Ol"dl"")ﬂ’eﬁ__ .
I Both these cases the-obesrvatioaZioesmaetiailye anything -
dﬂ'ectly measurable, but mqmﬁ pla,clng Of each 0bs atlon
into one of a number of descnptlve ca’oggm The. 99-%91"'&“"“5
in this case are said to be qualitative but it must not be thought‘.
that it is necéessarily iinj unpos 'BI”Y% the ca.tegones in a0 appro-
Priate order. For exmgple, a heaMast-er was asked to place his
Pupils into one of fouhcategories according 0 their general appear
ance at school, The categories were: well- dressed, average, below:
average, and vbry shabby. The numbers were 8s in table 3.3.

& § Table 3.3. Standord of dress of ?V@“b

\Well Below - - Very Total -
“dressed Average -average . aha,b'by 149'
81 73 39 '-15-

- The order in which the categories have been leed - th; lotgl Ei‘i
one and implies that the standard of dress deoronses z;‘s o :uld
goes from left to right. To put the ca.tegoneg i order of size v:h -
Produce a table whose true me'_- was. nOt.Obﬂous e 0-

careful study o R

33 The next case t0.be oonmdere._ . -;;il;gewabmn is
quantltat]_ve and consists. of IHBABY able .'I;l. .
M . " ) : .- k .
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hoight greighfiartemperaturastd is more common, Sometimes the
observation can take integral whole numbers only. As an exainplé
table 3.4 gives the num o oF oalls made to a local fire station each
da,j' for a year, the order of the days being across each row. Thus

on the first day there was one call whilst on the second day there -
were 10 calls and so on. '

Table 3.4. Calls fo local fire station

per day for one year Q
- : 1
19120 639021 10421 0 1 301
‘2 5013 61202 ‘10064 03I(HO3
L0183 62 60114 20420 2hH3 20
20104 12002 1340821 23003
22032 012402 40.1?,:'\'\0'120'4
20210 4038311 2043% 31240
34031 00212 02 0D 1000 4
¢ 1 260 110315 9 20320 0435 20
2061232 00316 1\8&\0C10 20132
300061 219012 e\M1e¢1 21000
] : Grary o™
20 1 oy I RIPYYRE 1 0 a1 04 01 0
11020 120063 30011 01201
04200 01101 12301 138040
101350 11,2309 01100 ¢ 113 %9
P 203 L 0"'{1_0-1 3 00 3 2 I 0010
10210%33031 11201 o0 5 0 1
1_%0;?-2031014210 3 1210
1 3 250 1 0.1 4 2 0 173 0 2 11
12 12044 ' . B0
5
A’\\“ Table 8.5. Grouping of calls
\ 5 . No. of ealls _ .Ho. of days
P\ o 0 HIT T 11
\ Y T LT 1
2 HT 11
3 1131
4 11
5 1
To red : . W L
e first step is $o group the figures
RCRL RO the same number of calls are in one

of the first 40 A =022, where the strokes for eact

| oSSR haxe-been plaged dn the appropriate gronps. The
- procedure is continued for:all the Temaining days 0 that Hnally
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the table contains a stroke for each day on the appropriate line. .
Theqe strokes 46 H6W Gotmnted up and reeorded as 1 able 3.6. o
The table shbws dleatly Dhat on 130 days ays 1 the year no calls were
made, on 109 days one call was mads, on 64 days two calls were
made and so on until finally on 5 days in the year no less than five
calls were made. On no day were there more than five calls. The
table is wholly free from ambiguity and there is no dlﬂiculty in
dlstmgmshmg between, say, the caso of no ca]ls &nd ﬁBe case of
one ca]l Tt was virtually 1mposs1ble to see the salient foatures from\_
the orlgmal data, such as the fact that on about one day in ﬂu'ee
there are no calls, but this becomes obvious from table 3.6 Once
again, the numbers involved in the table can be exyressed a8
percentages remembering to give the total, in tlus -gage’ 365, on
which the percentages are based. Y .

Table 8.6. Number of calls to ﬁf-e statwn edeh day for a year
No. of dg,ys\mth that

No. of calls W dbralﬁu];u ardy g‘LﬂilgEm
0
1 109
2 . 64
3 Ny 38
4 19
5 & 5
¢ \J : Total 365

L

The total numberef calls made in a year could be found quite
simply from table 3.6. On 5 days there were five calls, giving &
total of 5x 5‘33115 for those 5 days. On 19 days there were four
calls, a 110%.1 of 19x 4 calls, and s0 on. Hence the overall total

numbe;"fof calls is .
N\ - :
N5 B4+ 19x44+-38x3+64x2-+-109x 14 130x 0=452,

Thus 452 calls were made in the year and this is also the sum of
the original individual entries in table 3.4.

34 More usually the observations do not take m’t.egra.l va]ues
only, bufma,y take any numenca] value sub]_eet to the limitations
Sf the apparatis used for measune&w Suppose, for example, that

The heights of 100 Sehooiboys aged 14 years have been measured,
and the observations recorded in a notebook in columns of figures,.

as in table 3.7. A scale marked in- ‘oenths of an inch has been used,
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and the height judged. to the nearest mark. This implies that it is
correct to the nearest tenth of an inch. For instance if a boy’s
height is between 62-3 and 62-4 in. then it is recorded as 62-3 in.
if it appears nearer 62-3 than 62-4 in., otherwise it is put down as
62-4 in. The first step in forming a table is to pick out from the

100 measurements the smallest aﬂdﬁhﬁ&?ﬁg{eﬁ heights. These
----- ) : _Eeapmbm}y;aﬁﬂ;am ltahcised

. are found to be.54-3_and 688
T the table. Now it s nsual to have not more than about fifteen

groups in the final table, which can be achieved in this casedby
‘having a series of groups cach containing heights within a-range

of I'm. The procedure to be followed is shown in t@b‘fg—38: “Bach ™
group is defined in the left-hand column and the number of school-

Biys whose height. falls in sach growp is tecorded i ¢he Sight-hand
oSTimn. by means of a stroke. The groups are defifed'in such s way~
Sttt is no possibility of any ambiguity arising. For instance,
the first boy has a height of 63-3 in. and hl\hﬁ‘gogé‘into the group
that is labelled ‘63-0-63-9in.’. The secérid boy has a height of
60-0in. and goes into the group Iabelled ‘80-0-60-9in.’. This
procedure is carviedibiy B aukede the 100 boys. The rough
grouping has already brought ot bhe fact that the bulk of the
heights are clustered round about 82 in., a fact which would be
much more difficult to spot from the unsorted heights in the note-

book. "Using the ro Lable just_formed, a final table can be,
made (tablo 3.9). Tnithis table it is important to note the oy in
which the groupeare defined. __ T

C\[‘?.Ble 8.7. Heights of schoolboys in inches
033 BB 638 610 654 623  g14  geg  ga
800 346 611 29 gpg 593  ¢5.2 s?-:a gg-g gg:i
6500620 661 539 gqq 842 613 608 870  g50
G305 637 618 643 626 543 gae 634 618 g4
N2 623 80T 656 . 611 pag  gog 628 641 gl
N80 617 645 613 602 6o gg 594 683 @23
067 657 628 649 - 427 gay g9 626 639 g4
G4 679 634 557 631 g pag 658 604 g8 -
SL.7 624 619 - 6385 g).q 621 630 664 424 g5
%6 632 621 628 634 29 gog 621 613
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a little care must be exercised. Anyone looking at; table 3.9 would
assume that all boys with heights from exactly 54 to exactly 55 in.
would go into the first group. On referring back to table 3.8 it
can be seen that all boys whose heights are 54-0, 64-1, 542, ...,
54-9 in. have been put into the first group. Further, it has already
been demonstrated that & boy whose height is recorded as 54-0 in.

‘may have an actual height that is anything from half-way between
530 and 54-0in. to half-way between 540 and 54-1in., that is
from 53-05 to 5405 in. Similazly, & boy whose height is recorded
as 54-9 in. may in fact have'a height that is anything from 54:85
to 54-05 in. Hence the actual range of heights in the grOiip\HB—
soribed in the table as 54 are from 53-95 to 54:95 in_, §inbe any -
boy whose height falls between those two limits wilbbe included .
in this group. It is clear, then, thab the method~of defining the
groups in table 3.9 is not perfect and it can besilmproved upon in
one of the three ways given in the nexb tf?j spctions.

Table 3.8. Grouping uga ’o:f dam.

: www.dbrapli . ;
Group of heights {(in.) Ww.;'ﬁ”éi&ﬂlét}ﬁaé%ﬁl‘ gn
54:0-54-9 LN
55-0-65-9 AR
56.0-569 AN —
570679 o 1
580688 (N 11
5o.0500y N\ 1111 .
60-0-60:% ) a1 11
Lol - LT T T
629629 o M M1 T 1
630-63-9 Sy T T 1
AN840-849 ST T 1
W 6504659 w1 11
S0 86:0-869 Soun
~\J 67-0-67-9 11
\/ 63-0-68-9 : 1
Table 3.9. ‘Height of schoolboys
‘Height ~ No.of Height No. of
iy L achoolboys. _ {in.)’ schoolboys
: ' 62~ - 22
63- - . 16
e 12
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'3.5. Method (i). Tn the first place table 3.9 may be modified quite
simply by writing into the table thé exact boundaries of each. of ’.ohe
groups. These boundaries give the group limits as 53-05-54-95 in.,
54-95-55-95in. and so on. No measured height in table 3.7 falls
on one of these boundary values and it is thus guite clear into
‘which group each individual falls. '

Method (ii). Instead of giving the values of the boundaries of the

groups the central or middle value of each group is given. If.a

group contains values from 53-95 to 54-95 in. then the,éentral

value is half-way between these values, that is at $(53-95% 54-05)

or 54-45 in. Similarly the central value of the next gronpiis 56-45 in.
" Table 3.9 would then become table 3.10. D

¢ £
S S

. Table 3.10. Heighis of schoolboys
Height (in.), No, of Hai,gﬁ‘(iﬁ.}, No, of
captr

central values achoolboys values schoolboys
54-45 1 - ONY6245 29
5545 www.d bllaulibral'y,'qrg,irﬁ3'45 16
5645 e RV B s .

. b1ds 1 . 6545 7
5845 2 Q¥ . 6645 T4
59-45 4 67-45 a
60-45 R 68-45 1
61-45 18

+§ Total 100
N - | L
The group interyal is defined as the range of values in any one
group. In this'édse it is 1in. and may easily be obtained by sub-
tracting ope‘ééntral value from the next one, that is 56-45 — 54-45

or 56-45'-55-45 and so on. It is also equal to the difference

between the upper and lower limits of any one group. For instance,

thedfirst group has 53-95 as the lower limit and
{ M6, and these values differ by an inoh.

To obtain the group boundaries from a table that gives only

the group central values it is necessary to take: central value of
group + half the group interval, and ceniral value of group - half
the group interval, For example, the group with central value
62-45 has as its group boundaries 62:45+ 05 and 62-45—0-5,
i.e, 62-95 and 61-95 in, : :

54-95 as the upper

3.6  Method (iti). The methods of section 3.5 result in tables that
are technically correct but not very pleasing to the eys owing to the.
rather awkward central valne. One possible way to tidy up the
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table would be to take the group boundaries at exactly 54 in.,
exactly 55 in. and so on. This is a feasible solution, but a number of
observations will fall exactly on the group boundaries and there
must be some rule to determine how these are to be tabulated.
Two suggested rules are: '

(¢) Put the first observation that cceurs on a group boundary

in the higher of the two possible groups, the next observation in
the lower of the two groups, the next in the higher and so on. For
instance, suppose that the first two heights were 56:0 and 59-0in,
respectively. Then 56-0 would be put in the group 5657 in. whilst

59-0 would be put in the group 58-69 in. This procedure Woulgl'béﬁ :

adopted throughout the observations. 4 N
-~ (b) Put a half observation in each of the groups on either side

V" of the observation. If the first two heights were as in (@) then for

560 5 half would be put in each of the groups £5256 in. and 56—

57 in., whilst for 59-0 » half would be put in.gach of the groups

5
b

5859 in. and 59-60 in. This may secm & vatlier artificial method

" but, provided that there are a rg&@ﬁ%bls‘lﬁghber of observations,
. it should result in little or no erfg:;s.lﬁ SuBsegReht caleulations

" based on the table.

|
|

!

i

this trouble in _the FTOuDINgs. HOT exatiplo, 3 L 8
been measured to- two places of decimals and the groupmngs of

{

Table 3.11.,,Hé§-" his of sckooiboys

Height Nao, of\ Height - Neo. of
(in.} _ schw‘ib'éyﬂ . {in) schoolboye
5455 (N1 62-63 22
55-56 1 8364 15-6
5657 o) — 84-65 12
ST-58 LS 1 , 65-66 &5
5850\ 2 6667 45
5960 a5 6768 15
Je0-61 - 85 68-60 1
W) 6162 19 Total 100

‘ "The second method (b) will be adopted here. ‘Repeating the
procedure outlined in section 3.4, and using this rule for boun-
dary cases, table 3.11 is obtained. It will be seen thab although

—

the artificial concept of half a boy has been introduced, a gain has

Boon made in that the oronnps have conveniont boundaies and €40
contral values 56 How bad, 555 _snd, so Ob. Froquently the.

s 38 now 54D, A0S B 4 _
ufficient to avoid all

R N .
variable will be measured to an accuracy 8 cien

" gable 3.11 adopted, only heights guch as 64-00 or 59-00 in. would
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fall on the boundaries, and hence have to be divided between the
. upper and lower groups, If the heights are measured to two places
of decimals, it is unlikely that more than about one in a hundred
* of the ohservations will fall exactly on a boundary. This is an
~ extromely small proportion and the greater the accuracy of

‘measurement the less trouble there will be in forming the groups
for a table. ' '

/" 37 - The tables in the previous sections have all used the saie
grouping interval over the whole range of the variable, the variable
in this case being height. The chief reason for using eqital“class
intervals is that the numbers in each interval, or froguéncies as
they are called, are then directly comparable. Semetimes, how-
ever, the observations are very close toget.he;aﬁ;. one end of the
distribution but are far apart at the other endys0 that, if a snitable
group interval is used for the lower end, thereavill belarge numbers
of groups at the other end with few 0}'3}0’ ohgervations in them.

Table 3.12: Demthgbof ﬂw.les @t{;nder 35 years of age
R nd dud Wales, 1950

Age at death {years) No, of deaths
o5 14,265
5=10 1,176
\Q‘oﬂls 803
L \M5-20 : 1,366
L 2095 _ - 2,068
¢/ 23-30 2,707
\‘“’ 8035 ) 2,699
\ Total 25,064

ngm\lder the data in table 3.12 relating to the deaths of males
min;Englamd and Wales in 1950. The group intervals are all equal
and from the table one might deduce that whereas in the early
"teens about 160 deaths a year ocour (that is, one-Gfth of .803) the
deaths in the first 5 years of life were some 2,800 per year {that is
one-fifth of 14,265). The first part of this staterent is eorrect, th'(;
second part erroneous. A closer inspection of the figaroes from which
tjhis table was constracted reveals that the deaths are more or less
evenly spread over all the class intervals, with the exception of
 the first, where the vast majority of deaths ocour under 1 year of
v, bge. To illustrate this the firgt age-group in table 3.12 has heen
- further sybdivided in table 3.13 to illustrate how the deaths are
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in fact spread over those first 5 years. From a study of this table
it becomes clear that over half the deaths ogcurring under 5 years
of age do in fact occur during the first 4 weeks of life. This is
obscured in the original table 3.12. .

Table 3.18. Deaths under 5 years subdivided

Ago at death No. of deaths
Under 4 weeks 7,600 )
4 weeks-3 months 1,785 N
3-8 months 1,436 A
6-12 months ' 1,237 )
1-2 years _ - . \:\'
2-3 yoars . 585 PR
3-4 yoars . ' - 453 W\ )
4-5 years . 303 O

Total 14,265\

3.8 Suppose now that the two tables just? cbnsldered Were com-
bined in order to bring out how the deaths\were divided amongst
the age groups. This would produce a céuiposite table with varying
group intervals and would m&ky SSERWYIESIN Het¥ben age-groups
somewhat difficult. To obviate. this difficulty a further colummn
could be imserted giving the" niimber of desths for some fixed
interval. A period, such a8\ year, is chosen, and the number of -
deaths that would ocewr\in a year calculated, assurming that the
rate of ocewrrence of, (%aths ingide the group is constant. It does
not matter what Iength of interval is selected provided it is retained
throughout, butithe use of such a fixed interval enables comparisons
of the rate of'deaths for various age-groups to be made easily. The
figure of BMO does not mean that 98,800 deaths took place, but
that if he rate of deaths for the first 4 weeks of life was continued
threug}mut the first year, the resulting number of deaths would

redeh that rather large figure.

Table 3.14. Composite table of deaths
.No. of Deaths

‘No. of  Deaths
Age at death  deaths per year

Ago at death ‘deaths  per year

Under 4 weaks 7,800 98,800 45 years 303 303
4 weeks~3 months 1,785 10,313 " 5-10 years _ 1,176 285
© 3-6montha | 1436 . 5744 10-15 years 803 161
8-12months .~ 1,287 . 2474 - 15-20yeers 1,366 - 273
1-Zyears . 866 866 20-25 yeara 2,068 414
2B yedra 595 . 585  25-30yesrs ~ 2,707 _ b4l

. 3dyemrs ... 453 - 453 . 30-35years - 2,679 536 -
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3.9 All the preceding work has been concerned with just one
variable measurement for each obgervation, but often there is
more than one possible measurement for an individual. Suppose
that in fact each individual has had two characteristics measured.
Thus the schoolboys of section 3.4 may have had their weights,
‘a8 well as their heights, recorded, and in table 8.15 these weights
are given with the boys arranged in the same order as for the heights
recorded in table 8.7. To illustrate how these two characteristics
vary with each other g joint table is formed. To make this tahle,
a framework is first drawn up and each observation of height and
weight put into its appropriate cell. The framework is s];ﬁWﬁ as
table 3.16, and each observation is represented by a stroke. Thus
the first, observation has height 63-3 and 123-1, so tHat'it goes in

. the column headed 63 and in the row labelled 1224 This procedure

can be repeatod for the 100 observations. If any-observation falls
exactly on a group boundary a half is puj;\\in the cells that fall
either side of the boundary. The table, when completed, can have

 its rows and columns added up as ipvtable 3.17. The right-hand

A

column gives thmt&tdbmuhbeﬂb&ﬁﬁ&éﬁng in each row of the table
and would be the same result ag\if a table for weight, alone had
been compiled. Similarly the, bottom row gives the total number
in each colurnn of the table and is effectively a distribution of
height alone. The sums of these two marginal distributions should

.each equal the tota,]iqim"ber of observations.

TGbI6 3.15. Weights of schoolboys (1b.)

123-1 131-7;"129-6 1208 1270 1254 71129 121-3
75 18319 131-1 1234 1218 121-8 131-3 19237
131-'.';\125-1 1272 1260 1319 134.5 119-2 1266 131.2  127.7
1271} 127-4  126-0 1251 1273 112-8 1257 1272 115.4 131-6
’125.‘-8 122-5 1209 1272 195.8 121-4 1171 1208 1293 121.0
& “12'?-2 123:8° 1207 1206 125.5 130-7 124-6 1221 1341 121.5
3 1319 1311 1258 1317 130-2 1206 121.8 131-4 1165 1330
125-8 134-0 121-8 1203 117-4 1228 331.7 1206 1205 131.4
121-6 1259 1145 1332 1159 130:3 1274 1258 1207 1268
1263 1258 1224 1279 123-7 1219 122 1265 1230 127-1

1358 1283.9
1172 121.9

Such tables are called Yvariate tables

and are useful in bringin
out the relationship between two vari el

ables. From the original
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Table 3.16. Observations of height and weight

Woeight

I}, Height (in.}, central values

central A .

values 55 &7 59 a1 63 85 67 69
s 1 — — 11t —_ —_ S
s — 1§ 11} il S _ -
122 1 — 111 LT B 11 B AT 1 — | R
126 — — 11 11} THT VAT EAT 48 BT 1 —
130 9 — — 1 111 Bl BT T 1L —
134 —_ — - —_ 11 i1 ' 1 1

Tablo .17, Two-way table of height and weight ¢’

Weight S O ’
{1b.), Height (in.), central values A\

central , . N g - - .\‘ N

values 55 57 59 61 63 65 67 _{ ®b Total
114 1 — — 4 — —_ S\ — 5
118 — 1 3 23 2 - = — 6
122 1 = s 12k 11§ — 1 — 29
128 - = 2 54 18 s4v 2 — 3
130 - - 1 3 6 i 2 — 2
134 —_— — = = 3. \ )2 1 1 6
Towl 3 1 e anp CBNPRPYOTE 1

Caaés will arige where a bivacriéaf;e {;able is to be formed from data

for which there is no. obyio&tnnumerical seale for one, or even for

both, of the variables. The prineiples adopted are precisely the
the data in table 3.18 are classi-

_ same as for one variable only. Thus
fied first by age, whieh is on o numerical scale, and secondly by
sex, which doeg,] fg:-} have & numerical scale but iy simply one or
other of tworaltérnative categories. Ome of the variables, age, is
thus quantitative, and the other, sex, is qualitative. As before any
quantitgtive soale has the groups arranged in order of the quantity,
bug-for & qualitative scale the order is often the order of magnitude
. ‘unlds® there is some other natural order for the groups.

Table 3.18. Full-time students entering universities to study
" for a degree, Greal Britain, October 1954 '

Age on entering TUniversity
- Y [ -

B — —
; -~ 18 bub _ .
: } Under 18 - under 19 . 1% orover Total
Men. sl . Bl 9,630 15,582
Women [+ ., 32 . 260 .. 223 5,364
Tt .. . %238 7870 o 1L843 20,946
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3.10 'The meI']Ila. innsallestedsmthe.al SE1Ver or ava,llable 10 him
has now been reduced from a. long series of ﬁgures in a notebook.
o a few We]l choseu and appropmte tables. Sometimes the

e e the POHT under discussion
acnd no further analysis is necessary. But in many cages the tabula-
tion has merely put the raw data in a form suitable for further
comparisons.

Frequently the tables produced contain so much information
thmm‘ﬁfe fo di bits and pietes
WMWWf smaller
mmwxy It may be posst ¥ some
form of diagram, whioh 75 IEny people will find easier to understand

thail & tabl6 5L REiiTes; 76 Present i a olear and fareeﬁﬂ manner,
ﬂﬁﬁpﬁmm“ Of the miSmation, ~— ¢ T

EXERCISES /)"

Much of the data that has been obtained J.n\the exercises at the end of
chapter 2 may now be tabulated. The qusstions asked will probably be

answered very miwoh. f&b?b'lbl&ﬁﬂ}y ﬁ'f}ﬁl“%he tables than from the raw
data.

31 The rimber of t-elephone caJJs received at an exchange in 120
suceessive intervals each of” P min, d

uration are given below. Form a
frequeney table of the ﬁgﬁ'es :

6 3 4 L2 7 2 4 4 4 ¢ ¢ 4
486 5 89> 1 1 5 ¢ 9 3 4 5 5 3 4
6 4 802 5 5 3 35 § 4 4 2 3 3 3
4 206 4 6 3 ¢ 3 3 4 4 4 5 3
5;,7 8 2 6 5 2 4 g3 4 3 5 ¢ 4
S s 4 s 5 3 1 5 5 1 4 6 3
;\\2 05 1 6 5 5 1 3 1 4 1 5 @
8 8 6 1 6 7 5 ¢ 3 1.3 7 2 5

4 28 36 55 g9 27 10 23 19, 4g
28 8 24 18 18 NI | PR
2517 22 18 g 38 11 17 g 29
13 g3 2 2% 13 4 9 ‘7 % 30
2% 13 22 37 gy 6 23 1 4 g
24 42 12 19 g 18- 33 - 3 ;1 19
16 726 33 19 gy 88 12 13 5o
8§60 19 3 5 ‘21

8 47 33 25-
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Draw up a frequency table for this data. To make it reasonably com-
pact use groups of 1-8,9-17, 18-26 words and so on, and thus have about
ten groups. If this is not done a multiplicity of groups with smal
numbers will result.

3.3 The following table gives the strength, in pounds, of sixty samples
of cement mortar. Form a table, having about eleven groups, from the
observations, Notice that all the results are whole numbers and hence
the table could be formed (¢) by making the groups go from, say,
490-500, 500510, ete., or (b) by going from 489-5-489-5, 499-5-509-5,
ete. Construct tables using both methods. ’

536 402 528 572 BS2 - 506 644 502 548 6D,
534 542 570 BI8 532 562 524 548 530 ,BO2
564 538 540 530 590 564 830 560 572 526
542 556 500 546 564 - 528 570 540 FAGL 532
580 556 574 536 b56 570 540 546 7500 G4
576 490 572 578 886  B50 540 543\ 546 570

34 The following figures give the weights of fifty pigs used for a

feeding trial, The weights are in pounds. \ O .
195 177 180 200 197 170 AN\¥s0 180 192 184
194 204 200 201 198, . A% Lli 21 200 208 218
203 190 221 173 185 @B gy O8I 17a 180
206 280 218 9235 197 %210 217 206 200 191

- 242 295 = 206 228 196wy 196 230 170 2186 175

(@) Form a frequency tab Of this data using eight groups.
(b) If you were told phai $he ten pigs in each row of the table came

from the same litter wotild you consider that there were any differences
between the litters? { )

3.5 'The followi g\data. give the yield in pounds of roots of mangolds
in forty equal sized plots. Form the data into & table haying aboub
eight grou% of equal width.

339 . MNas¢ 322 831 277 289 332 302 318 306
314 325 330 328 301 316 338 310 304 302
{30p” 390 322 310 309 342 350 335 320 274
Bdp 341 344 324 316 342 351 3. 310 309

3.6 The following figures give the estimated diameters of forty-two
nylon threads in units of thousandths of an inch.

1-02 . 1-08 92 088 1-06 1-04 (88
1-06 1-10 1-00 304 104 1-08 058
104 106 108 100 0-92
092 1-02 1-04

i-10 096 (86
092 110 118
106 110 100 106 098
086 102 09 1-.04 092 38 1-06
104 . 1-16

Form a frequency tablo from these figures with about six groups of

equal width,
. sz
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3.7. The ages.in years at which tubereulosis was first observed in
125 machine printers were recorded. Make & frequency table of this
data (adapted from data of A. Bradford Hill) using about twelve groups.

167 447 307 303 357 695 539 461 429 321
329 371 55T 425 601 887 430 310 873 495
§47 484 57T 46T 267 445 382 247 100 57-8
593 176 425 206 345 647 368 540 536 400
30-4 344 556 341 339 590 5T 578 484 361
825 474 324 312 455 581 508 500 434 480
438 452 388 161 205 411 483 400 404 49:3
827 161 572 468 481 470  40.3 477 487 s> -
288 588 557 405 416 403 456 410 428 , 655
274 346 336 492 358 434 590 83 44-2.8413
550 480 467 472 333 389 3340 317 21-5.) 23.2
286 535 509 456 487 412 504 3pg 3R8 302
469 433 525 592 516 : O :

LS

N

' 3.8 The following data give the percentage ash o(;nfent in 100 wagons
of coal. Form a frequency table with abm@ Aen groups, selecting
boundaries for the groups such that no obselj‘qi,tioma fall on the boundary.

183 122 168 210 179 08\ 143 178 170 149
104 163 16 ulibdry Wgin 154 184 170 2.4
164 144 _1‘&’-‘3"“"%%%”'1%39{ ﬁ‘% 171 184 160 175
180 185 183 164 149 v' 181 100 184 185 175
192 164 179 185 U 172 159 1o 166 14:0
193 128 188 188, 183 168 181 7. 176 203
W8 165 172 198M200 191 150 900 181 132
S0 198 0 A5 11a 183 198 191 1oy aro
200 159 1TENIS6 154 . 181 155 147 58 16-7
M9 207 185 V209 173 174 299 187 188 14.8

3.9 The tableil\)elow gives the average wholesale price of butter per
hundredweight in Chicago over period of thirty-six months. Plot a

gmph uf\thm data, and attempt to egtimate whether or not the Pprice
varie§ §eording to the season of the year.

RS Jan. Feb, Mar. Apr, May June
) 1931 9sp 284 23.9 26.1 237 23-3
1932 236 22-5 22:8 201 18-8 17-0

1983 - 18 187 18:2 207 22:5 22.8

July Anp, Sept. Oct,, Nov. Dee,

ool SRS SN P 30-6

1932 18-2 20-3 - 2008 20-7 23-3 241

'_1933 24-5 213 C 234 2440 23-6 20-1

3.10 Drawu

p (a) & table for tengile strength, (5) a table for hardn e8s
apd (e) a _two-t:my table for tensile gtrength and hardness, using the:
data below which give the tensile g » in anits of 1000 Ib. per
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8q. in., and the hardness, measured by Rockwell’s coefficient, of sixty
test pieces of a certain aluminium die-casting (data due to W. A.

a7

Shewart),

Sample Tensile Hard- Sample Tensile Hard- Sample Tensile Hard-

no. gtrength ness no. sbrangth ness no. strength neas

1 29-3 530 21 25-8 69-1 41 29-7 80-4

2% 349 -2 22 237 5356 42 32-6 76-7

3 36-8 84-3 23 28 64-3 43 32-8 82-9
4 30-1 553 - 24 324 82-7 44 304 5600\

5 340 783 28 282 567 45 386 832

8 30-8 835 26 34-0 705 46 282 \W

7 354 - 714 27 345 875 47 29-2,\780

3 313 534 28 29-2 50-7 48 356\ B4-6

9 322 82:5 29 28-7 72-3 49 - @13 640

10 334 673 30 28-8 595 50 {348 753

13 377 695 .31 203 713 5L\ 7406 848

12 349 730 32 28-0 52:7 B2\/ 289 494

13 24-7 567 33 319 766 \;53 34-8 74-2

14 34-8 85-8 34 276 68T )\ Vb4 31-2 59-8

15 380 95-4 35 | 817 69:2" 56 338 Y62

16 26-7 51-1 36 30-8 602 56 34-9 57-7

17 25-8 Tdd 37 320 14 - 87 367 79-3

18 285 541 a8 WA DY 'g%]; .., B8 ..~ 323 67-6

19 28-1 778 3 ;115%111 ey ARl Sl YOI £ )

20 248 524 40 4806 702 60 347 T48

A\
Ol
' “)
x:\ w
O\
‘\\w
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4

THE PICTORIAL REPRESENTATION
OF DATA

41 The last chapter has shown how tables can facilitate the
reduction of the dbse_rver’s raw data and material to a form which
enables the reader to grasp the essential features portrayed; In
this chapter a further stage in this reduction is dealt with in the
construction of charts and diagrams, which enable the salient
teatured of a set; of data, to be picked out and vividly portrayed so
that the reader can spot, without detailed study. of the figures, the
féat_uresmof Particnlar interest, The primaq‘consideration to be
borne in mind in the construction of ahy chart or diagram is
clarity, since a confused diagram is of Mittle help and it is probably
botter o havo 1o disgram, 4t sl Shahy one that is virtually im-
posgible to understand without ¥-great deal of effort on the part
of the viewer. To achieve thisesbandard it is essentia] to decide at
the outset on the purposs~of the diagram and to exclude all
irvelevant matter from cousideration.

Broadly speaking, different considerations are involved acecording
to whether the data \e concerned with qualitative op quantitative
characters. In She former cage the study is of some charscteristic,
such as hair ¢d{btiring, for which it is difficult to have a mmmerical
scale, whereas for Quantitative characters, such as the height of
schoolb?gya,' it is possible to have a continuous numerical geale
whoge aceuracy is limited only by the inability of the measuring

_Bpparatus to record heights to an aceuracy of less than about, gay

{Pin. The somewhat different techniques evolved to deal with the

two cases will now be treated separately,

8 of qualité,ﬁive characters,”
There are a number of methods of fllnstratin

g & set of such data,
four of which will be described here.. o

Bxample 4.1 This example makes uge of the count; of motor-
vehicles given in table 3.1 (p. 22) an

: d discussed in some detail n
section 3.1. The data will be iltustrated by four methods, -
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Method (i) A series of lines are drawn, the length of each line
representing The mumber of Mdividusls i "on of 45 clusses into
which the data are divided. The base of each line is on the same level
so that the heights reflect The differences hetween the niimbers in-
the various classes. The Tesult is shown il fig. 4.1 where each of
the series of lines 18 labelled with the type of vehicle to which it
refers, and in height is proportional to the number of vehicles.
To facilitate reading the figure and to inorease its nsefulness a scale

O S, ]

is given on the left showing the numbers of vehicles represented-

by the vertical linos. Sometimes, as a further sid, an additional

%\
N
400 - . N 50
300 |- O 1*
e §’
7 { ~ 30
g N\
E 200 ] A 2 E
z www dbkaulibrary org.in
100 - N - 10
0 o L___Jp
G ek PSVe Mo

Fig. 4.Kx‘(‘eh’ielas on the Great North Road

scale is given oridhe right, showing what percentage of the total
fhumber of observations each veri‘sxi”qﬂgl;]gzi_g represents. Thus 527,
of the”'ﬁﬁsr\éfm voRiclas were oars. From such a dlagram of .‘hhis .
form m,tu\:h information can be obtained without refs'rf'ence*to_ _f,h”e'
Ongma,iﬁda.t;mﬁ‘wﬁe absolute numbers as well as the percerages
dre; given in the diagram and there is no need to give & table as
well ag the diagram. It is, however, Essential that t}}ja ptijers and -
not just the percentages are given, SO tﬁa@ﬁ?orrgatrgishft
suppressed. 1t is cusbomary to plage the categories in descendiiig
order of magnitude as. wes done when such data Wwas tabulated 1n
tabies 3.1 and 3.2. If there is a large number of categories and this

rule is not followed, the resulting diagram can beq_gxt;e_mely con-

fusm“g”ﬁ"é}ii}gﬁe looking at it for the first time.
Method (i) As.an.alternatize, to dravwing vortioa lines s series
of blocks can be dgawn, each block being of sl WIttH; Bt with

A oA TR
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-heiglits proportional to the numper of vehicles observed in each
category (fig. 4.2). With the numerical and percentage s?a,les
&ttached this method is verysimilar to the previous one. “S_?me_tn{lne:%
the blocks are shaded in order to make them stand out more
élea;rly, and the block method ;“i’..ﬁiﬁﬁf?fom’_ often prefq:_a,_l?la to-tht_a
line method, although the preference for one or the other is mainly
& matter of personal choice, -

" Inboth these methods it is possible to turn the diagrams throgih
a right angle so that the base line it vertical and the lines or blde -
representing the characters stick out horizontally. This syStein is

Ny

- 50
' . a\,/ - 40
07 _ R\ g
g . ) . 30 E
2 200 - g
E . W ,dbraulibreg' ¥oOFg.in . | og &
100 "
0-L A

o Cars . ,\:' YLorries PS5V, Motor cycles
Fig, bQVehicltas on the Great North Road

more comm @ with the line method than with the block method
but the prineiples involved are exactly the same ag before.

Mothod, \(iii) An_alternative o the second method, the block
method, would be to put the blocks on top of one another instead

"'&%M BECVIGURIY. "This ¥5rms what i called. s bar
diagram and is shown in fig. 4.3, T¢I constructed by drawing s,
ﬁl?;r?ffﬁfé'éﬁtmg'ﬁilmberﬁ and going from 0 to the total number of
vehicles, namely 788. A block is then drawn on a convenient bage
level with the bottom of the scale and e ;

extending up to 412, This
block is labelled ‘cars’, Using the top of this block as the base
another block is made extending to 4124 273 or 685 and this i

labelled ‘lorries’. Similarly the other two blocks are constructed
.- andthelagt biqck will comelevel with the total number of vehicles A
.5788, on the scale, Eﬂ;ium@nveniemt form of diagram .a,s'f-i_tr
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does not occupy very much space and a number of such diagrams
can be placed side by side thus enabling very strsightforward
comparisons to be made between different distributions.

i A ol B

A cohiiﬁowﬁ-"éiﬁdf)ﬁ of o ba;'é"'a:i;gram, which the reader is left _

to obtain, is that issned annually by the Treasury showing how
the revenue that is obtained by the Exchequer each year is divided
up into revenue from various sources such ag income-tax, surtax,
death duties, duty on tobacco and aleohol, purchase-tax and so on.

800— ) A
Motor cycles 2 AN
P.SV.s. O
600 A\
Lorries\|
D
E ~\ hat
400 Y -
E W .-.rw,d,b‘r:al library.org.in

L QY
SN

31"

N -
O
IN” ] -
7N\
,\\ ' Fig. 4.3. Vehicles on the Great North Road

&
"0

Ab£hs same time another bar diagram is issued which shows the
lﬁt%ou’s expenditure divided into the expenditure under different
headings such as defence, social services, pensions, health service,
justice, housing and so forth. - B

Method (iv) Tho forxth method s to e Szd & conr™h o
sizé into serments, the area of each , gegment being proportm “to
the numbers in that category. Thus as there are 360 degrees m a

circle the segment representing cars should subtend

SR § L PP
L 222 %360 = 188 degrees

N\
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at the centre of the circle. Similarly lorries subtend 125 degrees
and the other two eategories take up the remaining 47 degrees.
The resulting diagram is shown in fig. 4.4 and is quite a frequent
form of straightforward diagram. Some-
times this, a circular form of chart, is
referred to as a pie chart. It is difficult to
show the actual numbersg that have been
observed in each eategory without a sepa-
rate table and this is sometimes a draw-
back. This may be overcome by writing
the numbers in the various segments, but
it may make some of the smaller seg- P
ments rather too full of writing to be read Flgé:;:; gzﬁcﬁe%g:dthe
at all easily. It must be emphasised that <\
in every case it is important to label the diagrani¥o that it is easily
understood. The reader can then get a firm grasp of the details
without having to refer back to the original data, which may not
be available. libe
The choice of the- r\ﬁggtrg#i}oaﬁgﬁléﬁilgd to use for any particular
sot of data depends on va,riouszc’qns'idemtions, such as the number
of categories into which the-data are divided, the space available
" for the diagrams, whethéfa series of comparative diagrams is
required, and the worké':ré personal preferences. The overall object
is to combine clarity with aceuracy, and it should be noted that

uiothods (i) or (i) would show small dilferiices Bibween sets of
data more cleanly than (iii) or (iv). o
\n B ]

4.3 W;msplay of quantitative measurements must now be
considered and here again a number of methods are available
depending to some extent on the form of the data. First consider
("the’case where the variable can only take certain distinct values.

E"mmgale 4.2 The data ate the calls to a fire station over a year,
given in table 8.4 (p. 24) and studied in some detail in section 3.3.
For this data the variable, the number of calls to a fire station in

a day, may take only positive mbegral values 0, 1, 2, .... The
simplest method is to draw a line diagram analogous to that of
fig. 4.1. In this case the Lategories correspond not to qualities but
tothe quanties 0,1, 2, ... ATascThoTs drawn onwhich 0,1,2, ...,
etc., are marked out at equi-distant points. At each point _;$2$m1 '
line is drawn whose height is proportional To the

number of days on
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which that number of calls were received at the first station. The
resulting diagram is shown in fig. 4.5 and it is easy to pick out the
relative proportions of days with few calls and those with many
calls. OF course the order of the lines is fixed in this case and must
g0 0, 1, 2, ... the first line representing no calls, the second line just
one call, the third line just two calls and so on. It would be mislead-
ing to place them in any other order. It so happens that in this
example the method places the categories in decreasing order of

N

140 -
120
100 -
80

60 I~ \¢

Days with that number of cdlls

0 1 2 344 5
Numb&{fczﬂls
Fig. &%. Calls to fire station each day
. . _
+all lines followsd by short lines followed by tall lines, This is pre-
ferable to Eb]\ter;ng the or&ex_' of ‘gg,teg ories to, say, 2, 0, 1 which
wouldiéfely feult in & vory coufusing form of disgram.
N\

4.4“"N“ext, consider the variable that is not only quantitative bub
is also measurable on & continuous scale. '

Exomple 4.3 Supposé that there are only & fev_v obggrv&tions '
available and Take as an example the Heights 6f ten schoolboys

gveh tite first column of table 3.7 (p. 96). As there are only ten
heights it is clear that only a simple method of representing these

diagrammatically is possible. The first step is to draw a hor?zoutsf.l
Jline_to represent height. The lowest of the ten heights given 18
50-2 in. and the largest is 66-7 in. Hence the line must have a

convenient scale that goes from about 59 to 67 in. When the line

magnitude, but it will not always be so and sometimes there will be { ™
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" hasbesn drawn and the scale inserted the first height is represented
- by adot placed above the line opposite 62:3 on the scaje. Thesecond
' height.is 60-0 and a dot is placed abiove the line opposite 60-0 on

theBoale. This process is now repeated for the other eight heights.

TEe result is shown in fig. 4.6. ‘Tt should be noted that ha.da,ny -
of the heights been the same then the seEEﬁH"ﬂ'ﬁ’E‘WﬁﬁI‘d"Hﬁféwbeen

placed directly. above the first one. The diagram is c;:]h_.led;@:_dot
diagram and is quick and straightiorward both 1 to construct and to
understand when the number of observations is small, An advafi™
€855 "of this method is that a number of small distributiong\can
eﬁﬁﬂ?’ﬁei{:’ 7 placlng them one under each othin n“the
_fdﬁj‘ffa series of _ai‘o_t_ diagrams. Any big différstices Ti"éf“ween tl}e_ |

. . . ss ss » o o LS
58 0 - & 64 66 N 68
Height (in) 0
Tig. 4.6, Dat disgram qii};le\igi:ltg
www,dbraulibl'ary.ot{g’.i.ri

distributions are immediately obﬁsﬁs and no further analysis is

hseded” However, this_metlﬁm’os ugefumess when the number
of Gbservations satall 43§fgéfél§"ﬁ6%’omy 18 the diagram tedious to
draw but the multipHeitFor dots makes it far from pleaging to the

eye and difficult to interpret. In such eases some other form of
diagram must be ged.

4.5 By far the best form of diagram js an extension of the blocks
method {fig. 4£72) for the data concerning vehicles. In this example

the dataused will be more numerong than for the dot diagram.

Ezample 4.4 The data congist of the 100 schoolboy heights griven
dntable 3.7 (p. 26). The base of each block corresponds to an inter-
val on the measured ‘seale of height, The data were miven in the
+form of a table in table 3.9 (p. 27).”A scala.is now drawn reading
{rom b4 t0 69 in, and each inch marked off along the base, Usiag
‘the appropriate portion as base, & rectahgle 18 drawn whose height

reprgﬁgl}ﬁgj};@”ggﬂhgiﬂf boys in the second colummn of the table.
_number scal f ] '

is _ put on'the Teft-hand side and the fop
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with 8 inside it shows that this area represents three boys. Three
times the number of these small squares in each rectangle in
fig. 4.7 is the number of boys in that group. There is no need of
course for the small square to represent three boys; three was
chosen ag being a reasonable size for the purpose of this figure, but
a square one third the area might have been drawn to represent
one boy. This form of block diagram is extremely common and
very useful. I is simple to draw, neat, and easy to understand.
: ~

. ¢\
A 3 -
7%
7 % 4
N Y AN
3 O\

241

[+]

Number of heights

voeldbtaulibe :
SiFaterory or eI

54 56 58 60 62 64 66 68
Height (iIn 03 ¥

Fig. 4.7. Heigh:té ‘of sehoolboys

: N
A slight modification(of the block diagram sometimes mel with
is drawn by placing a'tlot at the point where the centre of the top
of each Tectangle,would be. These dots ate then joined up 1o
prodiics s conippous line. Such a diagr ¥

po NG “Fery similar_impression to_the block
. ot eiees T A

Tl
e e
e

4.6 "Difficulties sometimes arise if the group intervals used in the
tabulation of the data are not all equal. : _

Example 45 The data in table 4.1 are taken from an official
publicatiori, and give the nambers of persons with mncomes
between the limits of £2,000 and £10,000 divided into six intervals.
T4 will be seen, however, that the six intervals or groups do not all
have the same width but vary in width from £500 to £4,000. In
fact three different intervals are utilised, namely £500, £1,000 a.nd
£4,000. Someé device must be used to overcome this diffieulty, a8
atﬁe:préviOuh t,écha%.\ique'f of having a scale on the left-hand side for
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‘uge with all-$he blocks will produce rather different results ac-
cording ‘to. the method of grouping that is adopted. The system
used s to-imagine some constant interval to be used throughout,
and then to turn all the intervals into units of this constant

- Table 4.1. Incomes of £2,000-£10,000 in Great Britain
: wn the year ending & April 1940

Ingome in £ . No. of incormes )
£ 2,000~ 2,500 28,314 \
2,500~ 3,000 17,981 O\
3,000~ 4,000 - 20,414 L™
4,000- 5,000 10,775 QO
5,000~ 6,000 6,686 P
6,000-10,000 11,125 N
LV
7-| 4
Z Y,
25_?' . A
/] AWV
; www . dbraulibrar y-eegin
- /] 23 = 5 thousand
g 20 R
/ N
..
: .
8 51 2 KA
2 Prav
2R\
g 17
. 10—//{53
s W
Z O
B4 -
.§t~ /;
RNNN77
m\::‘\' ’ \] // —1 | - |
\ 2000 4000 6000 8000 10,000

Income (£)
Fig. 4.8 Incomes in range £2,000-£3,000
interval. Two methods oould be used g atTy out thi ardis
: | : ¢ out -
tion, both leading to the same diagram. o thisstand "

Method (i) Tmagine that £500 i
to be used throughout. Tt is
two groups, and using it the

) is selocted as the constant interval
in .fa,ct the true interval of the first
horizoutal scale is drawn from £2,000
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to £10,000 and the vertical scale is drawn from zero to about
30,000. The first two blocks can now be inserted as before. Thus
the first block has its base from £2,000 to £2,500 and its height is
equal to 28,314 on the vertical scale. The resulting blocks are shown
shaded in fig. 4.8. The next step is to draw a small square and to
determine how many incomes it actually represents. In this case
it will be seen that the area of the small square shown represents
5,000 incomes. The procedure now is as follows. Using £3,000-
£4,000 as base draw a rectangle such that its area is 20,414/5,000 O\
times the area of the small square, so that the area of the\
block drawn represents 20,414 incomes. Since the base of £3,000</
£4,000 is the same as that of the small square the height hag to be
20,414/5,000 or 4-0828 times that of the small square, andthis will
be level with 2,500 x 4-0828 or 10,207 on the original veftieal scale -
of numbers of incomes. Thus when the intervaligvdoubled the
vertical scale is halved. The same procedure is followed in drawing
the next two blocks. The last group has an ifterval of £4,000 and
the height of the block draw\yw%pd% ba,i; ofv£4,000, which is four

raulib,

times the width of the standard Squ&pa;;wfﬁ)ijgrg'm
11,125 1,000 OV
or

1,189 . 0-55625
5,000 < 4,000 ;

that of the standard squ. ;:’}}16 gtandard square has a height that
is 2,500 incomes on the c}igina;l vertical scale and hence the height
of the block will ber9°65625 x 2,500 or 1,391 on the vertical scale
on the diagram, The block will now have the required area to
represent ju%li‘,l% ineomes and the completed diagram is shown
in fig. 4.9. 0\ :

M et}fwd’{iﬁ An alternative and simpler method of constructing
thelblocks is to imagine that within each group the incomes are
evenly spaced. Thus in the group £3,000-£4,000 there are 20,414
incomes and the basic unit of interval is £500. Hence divide the base
into two portions £3,000-£3,500 and £3,500-£4,000 each of width
£500. Now if the 20,414 incomes are equally distributed over the
whole range of £3,000-£4,000 then there will be 10,207 between
£3,000 and £3,500 and another 10,207 between £3,600 and £4,000.
If the two blocks corresponding to 10,207 are drawn it will be
found that they are the same rectangles as before. Similarly the
last group goes from £6,000 to £10,000 and could be divided into
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eight. groups each of width: £500 and with §x 11,125 or 1,301

" incomes contained in each of them. Thus the eight groups would be

© £6,000-£6,600 1,391 incomes
* £6,500-£7,000 1,391 incomes
£7,000-£7,500. 1,391 incomes

£9,500-£10,000 1,391 incomes

I these eight blocks are now drawn using the original horizontal
and vertical scales it will be found that the completed black
dla.gram is exactly the same as before and hence the two piefhods

o . N . "\

\
o

2N

S %

s+ ' R4

wf o U

S 3

; ww.dbrauljbrary,o.rgrih.

No. of incomes in thousands
74

o
XN

sH 1IN

' J

. .'\s“

N . 1

ANT2000 2000 6000 8000 10,000

~O  Income ()
V - Fig. 4.9. Incornes jn range £2,000-£10,000

:;‘:.t?;mcany equivqlen_t_. Theﬁmt method does in fact assume
thavsh Iee mcor;tles are _ev]fnly spréad over each group. This particular
emphasises the care which must b

drawing and interpretation of disg -.a,ms.ﬂ' " hestomed von e

47 The question of soales beco 5 even more important when
dl'a'\?;:ingfg}‘aphs Ofgome ?Ontinuou;ﬂ}?.:-me&sured variable over a
period of time. The.rea,(__i.gﬂr...m.proba;bljf &lroady familiar with graphs,
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but there are nevertheless some common pitfalls which await the
unwary in the drawing or understanding of them, as the following
example illustrates.

Table 4.2. Number of mental defectives in England and Wales
on 1 January in certoin years

Year Defoctives Year Defectives
. 1935 86,086 1941 160,876
1936 88,060 1942 98,1256
1937 092,269 1943 98,434
19338 ’ 96,109 1544 ) 99,608 a
1939 090,144 1945 102,225 2\
1940 101,364 1946 102,390 NS ¢

Ny

Example 4.6 Table 4.2 shows the number of regiéte;'e& mental
. V.

defectives in England and Wales over the eleven-yearperiod from

1935 to 1946. The information is shown gra,p}ﬁca.g_;{ by two graphs

K7,
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1935 1970 1943 1947 Z. 1035 1937 1930 1941 1943 1945 1947

\ ) Year _ Year

Fig. 4.10 (a). Fig. 4.10 (b).

in fig. 4.10. The impression obtained from the first graph is thatb
there has been a staggering rise in the number of mental defectives
in little more than a decade, whereas the secor d graph gives the

- impression of & very much slower and more gradusl increase. These

E rather. different impresgions are obtained, of eourse, by tampering -

.. with the horizontal and vertical scales used. The vertical scale i8
- larged theﬁrstoase and the horimﬁt.al scale is large in the gecond -

4 MF
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d; however, that both thegraphs are correctly

shows the' ea,]ﬁa of any graph must be examined before any
- -oonelusions are drawn from it; general impressions are not enough.

e N
g .
£
i
% .
RO
. M 1930 1940

If one or both,
1t (as in the vep
clearly marked ]
best to adopt a
- gero iy clearly i

164 start at zero but at some point above

A fig. 4.10 () then this fact must be
Mlng impression is given. It is often
'ag that used in fig. 4.11, where the
er it is essential to recognise the



PICTORIAL REPEESENTATION 51

importance of supplying graphs, as well as tables, with full and
clear labelling and, if posgible, the source of the information.

As another example of a misleading graph look at fig. 4.12 which
purports to show the deaths per 100,000 population due to tuber-
culosis over some thirty years. The impression given is that of a
slow decline over the years concerned. As the scale on the vertical
axis, showing that in under 40 years the rate has been halved,
from 100 down to 50, has been omitted, the reader is given only
a vague idea of the progress of the decline. However, it is better >
than graphs with no units or scales on either of the axes! A

28D

48 In some problems, as has alresdy been noted, two mea\sure-
ments are made on each individnal. For instance, eaghi ofitwenty
schoolboys has his height and weight recorded. To ¥epresent such
data a two-way dot diagram can be formed. The herizontal scale
is made to represent height in inches, and thé vertical scale to
represent weight in pounds. For each boy adét is marked opposite
-the point on the horizontal scale repregenting his height and the
point on the vertical scale representing Mis weight. For example,
the dot in the bottom left-hand garmer of ﬁg 4.13 represents a
boy whose height is 58 in. an(Y W?llc?s?el l%?i‘g?ﬁ% & 'Tos b, Similarly
the other nineteen dots in ﬁg 4113 are placed to correspond with
the boys’ measurements, .\
. This form of diagr: 15 extremely valuable and is often referred
.to as a scatter diagram. It brings out clearly the relationship
between height sid weight, that is the heavier boys tend to be
tall and the lighterboys short. This phenomenon is indicated by the
manner in\whith the dots are approximately clustered along a
diagonal, rﬁnmng from the bottom left to the top right of the
figure.»If the dots had been scattered more or less haphazardly
ally’ Ewer the diagram and not somewhat concentrated along a
d_lagonal no such relationship would be indicated.

4.9 All the methods described above are termed ‘graphical’

methods of representation. Sometimes in popular surveys an
attempt is made at “pictorial” representation. An example of this
form of diagram will be taken from the house-building activity of

v&nous countries.

Ezxample 4.7 The data in ta.ble 4.3 are taken from the United
Nations bulletin of Statistics and give the average monthly number

4-2
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of dwelling houses built,iftcertain west European countries during
the year 1954, The data are shown in a pictorial manner in fig. 4.14
where one little honse represents 5000 houses built per month,
This method ofusing & group of objects, each of equal size, and
corparing thelsize of the group rather than the absolute size of
a block jsﬁﬁometimes a very forceful way of comparison. It is -
parucu@-\}y common in advertising where a general rather than
a detailed impression is often desired. For more accurate work,
hawever, such a method lacks precision, and hence the methods
O
' Table 4.3. New houses buils per month
in certain countries in 1954

Houses buile
Conatry © per month
Western Germany ' 45,200
United Kingdom 29, 494
Italy - 14788
Netherlands 5,707
Sweden ' 3717
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described earlier in this chapter are more 'frequently employed by

the practising statistician,

Western Germany
United Kingdom
Ttaly

Ne&aMds
Sweden

Denmark

House building in 1954
AdddAAAAdA
dadddasa
Add
" ¥ .
| f - 5000 houseie”

per month
‘ Source: United Nmoiw"ﬁulzm
Fig. 4.14. D
¢

EXERCISES N\

N\ows

58

41 The table gives the distribution of thé working population of
Great Britain in June 1945 and June 1939

www.dbidulibrary .org.in

June 1945 June 1939

Employment /\(thousands)  {thounsands}
- Armed Forces .“> 5,090 4530
Gover 1 2,080 1,465
Tndustry,, N\ N 14,386 16,535
Unemployed 103 1,270
Totg X/ 21,600 19,750

9 )

Repreaentf*@‘i}‘t’iata diagrammatically in three distinet ways, and
commentgpﬁhe relative merits of the different representations,

4.2 ”lele\'ﬁreekly receipts of the London' Transport system for their
three types of transport are given in the table for three periods.

April 1948
April 1950
April 1952

. Buses and
Railways eoaches
281 605
275 589
352 748

Trams and
trolleybuses
216
204
193

(All figures are in unita of £1000.)

Draw bar charts comparing the three years and comment on the big
differences between 1950 and 1952. .
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4.3 Using Whitaker’s Almanack or one of the supplements issued by
most newspapers after the last General Election make a table giving
the number of votes cast for (a) Couservative, () Labour, and (¢) other
candidates for the London Borough constituencies. Repeat the process
for English Boroughs and finally for English Counties. Draw pie charts
for the three distributions and discuss briefly the big differences you
notiee between the charts, : '

44 The table gives the number of deaths per day recorded in 7%e

Times of men aged 80 years or over for a period of three consecu.t'{ve
years,

N
Deathsperdsy 0 1 2 3 ¢4 5 g 7 g 4 \Total
No. of days 162 267 271 185 111 61 27 8 3§ () 1006

£

~ (#) Draw a diagram to represent this data.

{¢) How many deaths of men of 80 years or, ~0f'tce‘\r’ were recorded
during the three years? ’

4.5 Two varieties of tomatoes are grown on;%v'enty Plots of equal size
and the yields of tomatoes in kilo-grams,a.ﬁ

Varisty 4 1-8375  1.407,. 1088 1752 1773
1201 07788 1.042  1.223  1i633
Variety Bwvw idBsaulifmy orgdBs 1615 1.gp3
0-678 “\0'840 0842 1252 1217

...{Qﬂ’tﬁ due tc K. Mather,)

s \J

- By plotting a d?f gram for each variety compare the yields ob-
tained for the twd Varieties.

A/
4.6 Inthe r%ble the numbers of children who passed School Certificate
¢

or Higher.8¢Hool Certificate for each of twelve years are given. Draw
a gra,p};Q@ llustrate these figures, o
2 S
¢ \ 3 Numbers passing . Numbers passing
”~
\ W —_—t— '___‘_—L—-*-——ﬂ
N Year 8.C. H.8.C. Year 8.C. HS.0.
1935 51,238 7,660 1941 56,220 .  9@74
1936 54,783 7,691 1942 59,593 10,597
1937 54,795 8,034 1943 61,147 11,660
1938 54,850 9,514 1944 66,474 - 13751
19039 59,779 8,901 1945 70,543 14,145
1940 5508 917 1946 75619 15799
4.7 The table gives, in millions of pounds, the monthly figures for

imports and exports from Greas Britain. Represent these figure, i
graph and comment on the result, P Sene
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Imports Exports Imports Bxports
Date {£m.} (£m.} Date {£m.,} {£m.)
1930 Apr. 213 150 1951 Apr. arz 230
May 230 183 May 338 230 -
Juns 240 176 - June 358 200
July 225 182 July 358 222
Aug. 216 189 Aug. 368 226
Sept. 194 171 Sept. 337 208
Oet, 224 202 Oct. 363 235
Nov. 235 212 - Nov. 329 244
Desc. 239 189 Dec, 314 205
1951 Jan. 209 214 1952 Jan. 367 | 2RO
Feb, 248 18 Feb. 297 228
Mar, 304 191 Mar. 333 (w

"\
4.8 Draw a block dla.gram to represent the distribution of surtax
payers in 1944-5 given in the table. How are you gomg to deal with

the last group? : RS
JIneome {£) No. of incohtes
2,000~ 2,500 35,148
2,500 3,000 @ps
3,000— 4,000 5619
4,000 5,000 WU12,920
5,000~ 8,000 () 7.646
6,000— 7,000 4,940
7,000 8 quww dbrauhbrﬁ;sffaarg,in
8,000-10,000"% 117
10,000—15,000.’ . 4,289
15,000-20,000 1,559
Over 20;000 1,715

\
4.9 The table giveppbelow shows the Reglstra.r General’s estimate of the

age distribution of the population on 30 June 1947. The figures are
given in thousinds

\& Population (thousands)
'\~ " Ape last S, . \
KN birthday Male Female
AN 0- 4 1806 1718
~\J 5- 9 o ladd 1392
\/ 10-19 2870 2793
2029 3200 3218
30-39 . 3346 3403
40-49 315 3232
5050 . 2263 2699
60-69 1713 . 2154
70-79 920 1245
80 and over . 208 a7y

(@) Draw a diagram to represent the figures.
() Comment on the difference between the male and female dis-

tributions,
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(¢) From the table it will be seen that there are more males aged
3049 than aged 1029, What does this imply? .

410 The table gives the number of deaths in 1947 of mals and fomale
children under 1 year old, subdivided according to the age at death.

Deatha ) Deaths

Age. Male Female Ape Male Femaslo
Under 30 min. 480 434 1 wosk 1440 1148
30 min~1 day 3560 2508 2 woeks . 950 722
1 day 1868 1040 3 wecks 744 465N
2 days 1163 718 4 weeks—3 months 3706 2516
3 days 811 404 3-6 months 3118 237
4 days 488 357 6—9 montha 1803 £\1420
5 days 397 314 9-12 months 1010, 791
6 days 297 250 N

The single age given is the lower boundary of the gl‘b&fp
Draw a block diagram for this data bearing in‘thind that there are
8ix different intervals involved. - Y '

4.11 The degree of cloudiness may be measitvéd on a seale from Zero
to ten. The table (due to G. E. Pearce, 1928)ives the degree of cloudiness
at Greenwich during the month of July for the years 1890-1904
(excluding 1901). AN '

Degree of wwwlmaéﬂiblia?yzalmﬁee of No. of
- eloudiness days ™ " . cloudiness days
10 676< 4 45
9 148, 3 68
8 90 _ 2 74
. 7. \ B 85 1 129
6 £ W &5 0 320
, N \& 45 Total 1718
Draw a ]ipe{&gram to illustrate these figures,
4.12 The\figures for accidents involving motor cyeles in column A

bBlOW'{!l'fe extracted from a report entitled Road Accidents published by
H.M:8.0. in 1946. The set, of figures in column B represent the analysis
o{a}bout 600 motor cycle accidents occurring abroad,

Percentage of accidents

- Object struck

by motor cycle A B
Car - 25-1 39:8
Pedestrian 21:5 41
Froperty 18-9 7.2.
Bigyele : 147 4d
Lorey - : 11-¢ 291
Bus 42 gp
Motor eydle 3y 75

Horse-drawn vehicle 1-5 N
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Represent the figures in a diagram and write a brief report on any -

differences you can see between the two sets of figures. What role has
been broken in the method of presentation of the table?

4.13 The table gives the employed percentage of trade union members
and the marriage rate per 1000 of the population (i.e. the rumber of
marriages in England and Wales during the year expressed as so many
per 1000 of population} for thirty years. The data are taken from
Unemployment by W. H. (now Lord) Beveridge. :

Bmployed Marriape Employed  Marriapd
Yoar percentage . Tate Year peroentage TateA
1900 97-55 16-0 1915 =~ 9900 }g-f".
1901 96-65 159 1916 9955 . a9
1902 95-80 159 1917 9940 188
1903 95-00 15-6 1918 9980 N 153
1904 93-60 15-2 1919 97504 & 198
1905 94-75 15:3 1920 9745 20-2
1606 96-30 BT 1921 82:d6 16:9
1907 96-05 158 1922 5082:80 16-7
1508 91-35 151 © 1028 L L8750 15-2
1909 91-30 147 1928 3" 90-90 153
1910 94-50 150 - 19%5) §8-95 15-2
1911 96-95 152 1926 87-30 143
1912 96-88 156 Sig27 9040 157
1913 97-90 15-7 Wwwndbrpgilibrary.ouggin 154
1914 9675 159 5% 1920 89-80 158

Draw a scatter d.iagmmfff} employed percentage against ma}'xiage
rate. From this diagrami\would you say that there is any truth in the
assertion that a high smployed percentage is associated with a high
marriage rate and, ¥oe versa? :

414 In the.téb}e below are given the weights, in ounces, of the heart
and kidneygof thirty healthy men aged from 25 to 55 years. Plot a
scatter dig:gra,m for the two weights. Is there any relationship between
them 2% _
) i . Weight Weight
A}ult. ,._ivj.igﬂ.s_.._‘ Adult ,-———ig—h———\ Adult ——
no,  Heart Kidneys no. Heart Kidneys no. Hearb Kidneys

1 11-50 525 11 10-50  10-00 21 13-50 1150
2 1«1—75 1450 12 1175 1276 22 - 18300  11-00
3 13-50 9-00 13 1000 9-60 28 1050 - 10-50
4 1050 9:50 14 1450  I3:50 24 11-50 _ 12:00
5 1495 1250 15 1200 900 26 950 8-00
8 13-50 11-50 16 11-00 9-00 26 12-00 8-00
T 1050 1075 17 . 1400 14850 27 1450  11-50
8 g-50 11-25 - 1§ 1500 1650 . 28 1235 9-75
9 11-50 g50 19  1I-50 © 1125 - 29 11-00 800
10 1200 1150 20 1025 &00. 30 1200 -00

A -
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4.15 Measurements of span'and length of forearm, in inches, were

- made on sixty adult men,
Adult Adult
no. Bpan Forearmm  no.
1 68.2 17-3 21
2 67-0 13-4 22
k] 731 20-8 23
4 70-3 171 24
5 709 187 25
.6 763 20-5 26
7 655 179 o 27
8 724 204 28
9 66-8 18-3 T 29
W 707 20-5 30
11 651 19-0 31
12 665 175 32
13 675 181 33
14 644 171 34
15 64-8 18-8 35
16 727 20-0 36
17 71-9 19-1 37
18 787 191 a8
19 68-3 " 180 39
20 661 18:3 49

Hpan

68-7
63-5

125

67-5
21
71-6
85-6
65-7
64:2
TI-6
73-4

T8,

T1-5
780
68-0
65-1
701
68-4
713
739

~

Adult

Forearm no. Span Forearm
182 i1 703 19-0
189 42 . 724 20-5
194 3 739 20-4
189 4 723 19-7
199 46 676 18-6
20-8 46 702 19:9
17-3 47 666 183
18-5 48 751 198
183 40 722 {les8
194 50 656 ) 190
19-0 51 722%° 204
20-0 52 4107 173
205 53 { 671 16-1
19-7 a4 )" 708 19:2
188 55> 70:7 196 -
177 L N\B6 682 182
1940 7 57 695 19-3
IS 58 70:0 161
a6 59 730 21-0

W\ 208 60 680 186

Form tables for span dhdhMkasy ity particular attention to the
treatment of any observationswhich fall on the boundaries of your
dia.%am to discover whether the two variables,
linked.

groups. Use a scatter
- 8pan and forearm, are

416 The table
iron castings in_p

Tenrile q;ra;n th

{cant%y\a:lﬁes)
Snrmo -

48,250
LN 8750
7 w0
49,750
50,250
50,750
51,250
51,750

Frequeney

GMMM#HMI Ll

& : :
giv% the tensile strength of seventy-five malleable
1unds per square inch.

Tensile strength

(central values)

52,250
52,750
53,250
83,750
54,250
54,750
65,250
85,750

Draw a block dizgram to represent the data.

4.17 The table

accidents on railwaysin England and Wales 19562, subdivided according

to ags.

Frequency
4
8
12
11

gives the numbers of deaths of Persons involved in
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Age No. killed Age No, killed
0-5 9 4045 26
5-10 2 45-50 - 48
10-15 2 50-55 58 '
15-20 39 55-60 42
20-25 46 8065 38
25-30 27 6570 1
20-35 35 Over 70 39
35-40 29 . Tota 449

(@) Draw a block diagram to represent the data.

(5} Divide the data up into eight groups only, na.mely 0-10, 10-20,
and so on and draw a fresh diagram. Does 11; show acny marked dlf
ferences from that drawn under (a)?

418 The table gives the number of deaths per 1000 lme bu'tha of
infants aged between 4 weeks and 1 year in the years, 1621Tand 1950,
divided according to the social status of the fa,tl\n {data due to .

J. N. Morris and J. A. Heady).
Deatps por 1000 bizths

Father’s status W(Je21 1950
T. Professional ANV 150 49
. Intermediate K S 271 , 59

. Partly ekilled W W ﬁ‘dgﬁbm"hblﬁv OTgN 149

IL
III, Skilled wm-kars 10:5
IV,

V. Unskilled 93 60- 2 : 17-9

There were 848,000 hV..B\I)]l‘thﬂ in 1921 and 697,000 in 1950. Draw
diagrams to show (a) the-differences in death rates according to status

of father, (b) the cha, in death rates during the period.

C\
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5

FREQUENCY DISTRIBUTIONS

5.1 The reader who has conscientiously worked through the
preceding chapter and ite examples will have come across many
charts and diagrams of varying shapes and forms. In order to
refer eagily to the form taken by such charts and diagranis; two
technical terms will now be introduced. <\)

Frequency distribution. The first term, ‘frequency distribution ’,
can be illustrated by stating that a table such as(table 3.9, where
the numbers of schoolboys with heights in différent categories are
recorded, gives the frequency distribution“of ‘the heights of the
100 schoolboys. Thus a frequency distribittion merely gives the
frequency with which individuals fall it a number of different
categories. The interval chosen for'{he classification is referred to
a8 the group inferval, and the fpéqﬁency in any particular group
interval is the group Jrequengys The manner in which the group
frequencies are distH bRt ONEr Hs gronp intervals is referred 4o ag
the frequency distribuition of the variable. _

Table 4.11s g froqdency distribution of the number of incomes
that lie between £2,000 and £10,000 in the year ending 5 April 1940,
The group intervals in this cage do not remain constant over the
whole range of the variable (income) but, nevertheless, the resulting
d.istributioiﬁs still a frequency distribution. The exerciges at the
end of el}a})ter 4 give numerous frequency distributions of variables,
me&iﬂ deaths per day, the tensile strength of iron castings, the
ages of the population, and the degree of cloudiness at Greenwich.

~ ‘Their characteristic shapes may vary widely but they all give an

\/ indication of the spread of the variable over the range of variation
that is being considered. Thus the frequency distribution can be
regarded as the mext stage in the experimenter’s work after he
has obtained his raw material and reduced it to 'ma.nagea.ble
Pproportions, : : '

Histogram. In chapter 4 the procedure by which frequency
distributions could be represented by block diagrams was described

in detail. The block Efg(am orresponds to some parti
frequency distribution is emw of the da a. Thug
M T . )
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fig. 4. 7 gives a block diagram for the data of sehoolboy helghts n
table 3.9 and is the histogram of the data.

Note that in a histogram a definite area represents a fixed
number of observations. This fact enables the group interval nsed .
in a histogram to vary from group to group and yet the resulting

‘diagram to give a true representation of the data. It is desirable
when constructing any histogram to draw a small specimen area
and label it with the number of observations that it represenis.
Then subsequent blocks can be drawn to represent the correct(

number of observations corhpared with this specimen area. The-_' :
area on any base then represents the number of observa@tms e

falling within the limits of the base. g
These two terms, frequency distribution and hmtogfam,

important concepts, and will often be used and referred to in the N
following pages; it is therefore important to grasp fally the meaning .~ "

of both terms. A histogram is, essentially, %\useful method of
* Hustrating any particular frequency dlstl‘lbutmﬂ

52 In fig. 4.6 a dot diagram was d,rawn for the helghts of ’oen.
schoolboys. The process can be, g,q}aﬁgl%eﬁll breu d further dots added.

Thus when a further ten boy& shave been méasured, the twenty B .
s o e Swo’-uo s _» .
I I I,
58 60 \ 64 66 68
X Helght (in.)
\& 2% mg 5.1

'helghts in ggwe & dot dla,gra,m such as in ﬁg 51. A fm'ther ten_ o
boys are o

measured and the thirty heights now available give. S

the dot 61&gram shown in fig. 5. 2 This proeess of measurmg more.:.;: | -. B

58 60 62 . 64 .66 .- 68
Height (in.) '
‘Fig. 52 .

[
& ¢ 3 nnnuooo.ol 1} ..I. [
y T T -

boys and putting in dots to represent tJleJr htalght'S "0'31' . early' .
be eontinyed indefinitely. The dot dlagl'acm would; of ‘3‘11'39’
contain more and more dots as the nitmber of sch

It will be noticed that when there a.rﬁ ben
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form, A little basic information such as the limits between which
the heights fall can bé gleaned but not much else. When twenty
schoolboys have been measured the twenty dots on the diagram
are gtill in & very irregular form, although. there is some small
'~ evidence of a pattern emerging, in that there are rather more dots
in the centre of the spread than at either end. When the number
of observations is increased to thirty the number of dots in the
centre continues to grow at the expense of the two extremes, and
the dots are spread in such a manner that, broadly speakingsa
more definite pattern is emerging. Though it is still very crudgi and

48 : L

Number of heights
S

T T

e

._
Y]
|

o ) dibradlibbaiols |

1 Y d
5 %6 8 0.V o4 6 e 70
- (N Height (in)
Fig. @8> Height of 200 schoolboys

XA
irregular, it leads .u;ho expect that an even clearer pattern would
emerge if the m@mber of observations were still farther increased.

When a hundred observations are available & dot diagram is no
longer aﬁtjjtable method of representation and a histogram is more
apprqgi’h e. The h.istogr&m'corresponding to the heights of the
{il;gtif};uncl-red schoolboys was shown in fig. 4.7. This histogram is

(Ieregular in the sense that the blocks do not go up or down in an
exactly regular progression. The general impression gained from a
study of the histogram is that the main bulk of the heights are
clustered around 62 in., with g few spread out on either side, down
to 54 in. at the lower end and up to 69 in. at the upper end.. ’If 100
more schoolboys were selected and their heights measured a fregh
his-t,ogra.m could be drawn, and the histogram resulting from the
heights of the 200 schoolboys is shown in fig. 5.3. Tt will be noticed

that the pattern is becoming more prorounced and regular but

owing to the fact that all heights within an inch are being grouped
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together, the histogram has.a kind of ‘step’ appearance rising to
a peak in the middle and then falling away again.

Suppose now that even more observations are taken and at the
same time the observations.are grouped together, not in groups
that have a width or group interval of one inch but in group
mtervalg of half an inch. This will produce more ‘steps’, but each
step will not be as high as before i the area under the histogram
is kept about the same. This procedure has been followed using the
heights of the same 200 schoolboys, the resulting histogram being ,

S
T
4

r—

F \ N
- 7%
£
5

T
_I

Number of heights
=
T

L
T

24 56 58 60 ww&,t{hitﬂtd&ibral‘bggrg,jn 6'8 70
Heightin.)
Fig. 5.4. ]f(eighta of achoolboys

based on a group mberv\al of half an inch (fig. 5.4). It is rather
smoother than befo;‘e and gives a more regular appearance, with
steps that are not’too sudden or unusual. Each block shows a
gradual chang®in height from the one that is next to it. This
process of{ g more and more observations and making the
widths of “the groups successively smaller could be eontinued.
If neuessacry the heights would need to be measured to & greater
degreé of acouracy than that of one-tenth of an inch. A fresh
histogram would approximate in shape to the previous one, but
ag the group intervals are decreased the steps become smaller and
smaller until eventually the appearance of the histogram is closely
akin to fig. 5.5. From here it is a simeple matter to visualise that
the limiting form of this histogram, as the group interval is de-
creased and the number of observations increased, will he the
smooth. curve drawn in fig. 5.6 which appears very little different
from fig. 5.5, except that the vertical uprights of the blocks ate



64 PRINCIPLES of_gTATISTlcs '

now missing. This limiting curve is called & frequency curve and is
of course analogous to the frequency distribution that was defined
earlier, but for an indefinitely large number of observations. It
must be strongly emphasised that this curve is the result of taking

Number of heights
1

_ bl _

54 56 58 60 62 64N 66 68 70
Height (in) ()"

Fig. 5.5. Further histogram of heights

www.dbra u_lj]qr?ﬁy Lorg.in

C \‘ v/ Heighe (in.)
' ¥ig. 5.6, Frequency ourve of heights

an extremely large number of observations and is an ideal that
may be gppro?,ched only if the number of observations is sufficiently
large and their measurement sufficiently accurate.

53 The great value of a frequency curve is that it enables the
pfop(-artae-s of distributions to be examined, and varying forms of
dlg@butloqs to be described and compared in a general way. Itis




FREQUENCY DISTRIBUTIONS 65

virtually impossible to produce a complete description of frequency
distributions, as they can take so many different forms. But it is
often possible to make an approximation to the form of the
frequency curve underlying a particular distribution. By reference
to this visualised frequency curve it is then practicable to make
general eomparisons between the distributions of two different
variables or of the same variable in two different places. To
illustrate how a frequency curve can vary it is proposed to diseuss
some of the forms taken by the frequency distributions of chapter 4.
Five distinctive classes of frequency curves will be discussed in
some detail. These curves by no means exhaust the possibilitiés))
but they give a good indication of the types met with in praftice.

Example 5.1 First there is the type of distribution which has
been shown in fig. 5.6, representing the heights of gchoolboys. Tt
looks like a ‘eocked hat’ or & ‘bell’. For brevipxthis type of fre-
quency curve will be referred to in later pags oa.s\bé]l-shaped. Itis
very common in practice as many variahlég) such as height and
weight of human beings and animals, and’the measurements of
plants, approximate to this form of Q@ﬁi@m%éifactory engaged
in the manufacture of steel rods on'a large scale, all of which are
nominally of a certain fixed length; often finds in practice that the
finished lengths vary slightly™ No machine is perfect and the
slight differences in the finished product will be due to the machine, -
the raw material, the temperature, the humidity, the machine-
operator and so on (; hi“such a case the final Iength of the rod is
the nominal or planted length plus the effect of any errors due to
the various factorsinvolved. These errors may either be positive or
negative and\bften they will .cancel each other out. Sometimes,
however,.there will be more positive errors than negative ones, so
that the final rod will be longer than the nominal length specified;
or thewreverse situation may occur. When a large number of rods
have been manufactured and their lengths measured, the histo-
gram of the lengths will usually be found to conform to a frequency
curve which is of this bell-shaped variéty. The nominal value of
the length is in the centre of the bell, corresponding to the most
common value, whilst the observed lengths of the manufactured
rods are spread more or less evenly on either side of the central
value, the curve decreasing to zero at either extremity.

- This particular distribution or frequeney curve occupies a central

3 . M
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position in the theory and application of statistics.  Accordingly
it will be discussed in more-detail later, when various statistical
tests are derived and illustrated. It must be borne in mind through-
out, however, that any frequency curve is an ideal that can be
reached only by a very large number of observations. Unless this
is done a slight unevenness in the histogram could obscure the
underlying frequency curve.

54 Example 5.2 The next form of frequency curve to be dis-
cussed has a very different shape. To understand how it cah afise
imagine that it is possible to measure the heights of schoelboys,
all aged 14 years, very accurately indeed, say to fiyé. places of
decimals (or a hundred thousandth of an inch). (I, using the
measurements the figures are, as in the earlier example, rounded
off to one place of decimals. By doing this a smallerror of recording
is made. This is the difference between the acenrate, or true height,
and the ‘rounded-off’ height. This diie?eime will lie between
- ~0-05and +0-05 of an inch and is ofteNzeferred to as the rounding-
off error. If this error is obtained fora'Targe number of boys—and
it will require very accurate measurement on each boy—the tabu-
lated errors will hot" ﬁa%%gu%ﬂagr%er orm as in example 5.1. The
reason for this is that practieal experience has shown that people’s
heights are not in generalan exact number of inches, People with
hsights between; s%{‘~6’2-15 and 62-25 in. are not in general con-
centrated at 62-Ain. exactly, but are more or less avenly spread
over the range\ﬁ'om 62-15 to 62-25in. Inches are, of course, a
purely arbittary and man-made unit, and another wnit such ag
centimetres.could equally well be used. Even if hoys always had
exact/heights on one scale of measurement they would have in-
exagtiheights on another scale. Thus it seems that the number of
y -Boys whose heights have the figure 3 in the second place of decimals
will be about the same as the number having 7 in the second place
of decimals, since there is no reason for one figure to appear more
often than any other. This will be true for any pair of figures, so
that an examination of 2 table of rounding-off errors would show
them approximately equally spread between the limits of —0-05
and +0-05. If more observations were taken and more rounding-
off errors accumulated, the regularity in a histogram would become
more pronounced and a table with equal group widths would have
approximately the same number of observations in each group.
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Hence it seems that the frequency curve corresponding to such
a table will be a level or horizontal line of uniform height between
—0-05 and + 0-05 in. Diagrammatically it is illustrated in fig, 5.7
and the distribution is often called the rectangular distribution as
its graph resembles an ordinary rectangle,

The rectangular differs from the bell-shaped frequency curve in
two main features. First, the two ends of the distribution are
firmlyfixed at — 0-05 and + 0-05 in:, whereas for the bell-shaped dis-
tribution there is no definite starting- or end-point, but a gradual
tapering down to zero frequency at either end of the distribution:

£ X
2N\

"\
% N

I
; :
[13 "
k! i \
3 ! )
: I
g \
g 1 N7
= ! o\
| »)
L
=005 wwuﬂdbrauhbral y.org.th0rd5
Rnundxng—oﬁ'error

Fig, 5.7.. Rectangular distribution

Secondly, instead of hagmé 8 mazimum, or mogt populacr value,
which occurs in the cetifre of the bell-shaped curve, the rectangular
curve hag all valueg égually likely and no smg]e value ocours more
often than any bthér.

55 Tn thebellshaped distribution of example 5.1 the value at
the centl:e&a,]s greater than the values. on either side, whereas in
the req@é}ngula,r distribution there isno peak. The following example
is Difé\distribution having a trongh and not a peak in the centre.
E’xa/i}zple 5.3 In exercise 4.11 of the last chapter a line diagram
wag drawn of the degree of cloudiness at Greenwich for the month '
of July over some fourteen years. The cloudiness was expressed
on a scale which went from 0 up o 10. The line diagram gave the
appearance of a large or capital U, and had the degree of cloudiness -
been expressed on a continuous scale and more observations be-
come available it is very likely that a smoother curve would have
been obtained. Thus the underlying frequency curve is probably
something like that illustrated in fig. 5.8.
: 52
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Expressed in words this means that there were many days when
the sky was either complstely clear or completely clouded but that
few. days were in between these two extremes. Once again the
curve has its two ends or terminals fixed, but instead of having a
maximum in the centre like the bell-shaped curve, it has a mini-
mum value in the centre and a maximum value at either end. This
formof frequency curveigin very marked contrast tothe bell-shaped
. frequency curve. Tt rarely occurs in practice. :

Frequency

.

_ At dbl'ﬁ_l!“br?’"“{:drg‘m
0 S 10
Degree of cloudiness

Eg.:&,s U-shaped distribution
¢ '

mirror ga}ge of the right-hand side and vice versa. This is demon-
strated i .
Agz{ frequency that is a given distance to the left of the ventre is

<n%atehed by an equal frequency the same distance to the right,

5.6 Not all distributions are of Symmetrical form and the next

two examples are of non-symmetrical distributiong or, as they are

. usually called, asymmetrical or Skew distributiong, :
Ezxample 5.4 The basic data used for this example are the agoes at
marriage of bachelors in England and Wales for the year 1952,
g%ven in tabular form in table 5.1. The data can be plotted as a
histogram and it is at once apparent that the distribution is not
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symmetrical. The numbers seem to rise to a peak around 24 years
of age, but there is a very rapid rise to this peak from below with
a much slower dying away of the numbers when above 24 years.
This is because, although marriages can legally take place at any
age over 16 years, and some marriages take place right up to the
age of 80, the most popular ages for marriage are from 22 to 27
yeaxs. Thus the lower terminal is some eight years below the peak
but the upper terminal is very much farther away. If the age-
groups were made narrower, the resulting frequency curve would )
be something like the very asymmetrical form of curve shown in

e >\
AN
R&4
g &
g
g D
www,dbvp;.l].i'bl'ary.org.in
R J T TS I ] T
15 25 35 45 55 63 75

Age at mé:nage of men
I«‘;.g\&g Skew diatribution

fig. 5.9. In such a. cQse there ig still & maximum value, but it is no
longer in the cent{e of the distribution. In this particular case the
long tail OGK i to the right of the maxirsum value, but this is
not always(hecessarily so. For example, readings of barometric
height tz\akén daily over a long period at one place can give rige

foﬁn of frequency distribution or curve that has the longer tail

left-hand side.

Table 5.1. Ages of bachelors married in England and Wales, 1952
. Age No. poarried Age No. married :

16-20 21,441 50-54 1,801

2124 127,717 5559 8231

25-29 .o9a317. - 60-64 418

30-34 . 32,367 : 65-69 237

35-39 12,640 70-74 97

4{-44 6,404 Over 74 39

4549 - 3,394 Total 301,693



70 : PRINCIPLES OF STATISTICS

5.7 The amount of skewness of the curve can vary a great deal.
Consider a symmetrical distribution with the maximum value
in the centre. To obtain a skew distribution the maximum is
displaced from the centre to one side or the other. If the displace-
ment ig increased there comes a time when the maximum value is
at one end and all the other values are less than the value at that
terminal, o

Example 8.5 Consider the data relating to incomes hetween
£2,000 and £10,000 given in table 4.1 and illustrated with a histo.
gram in fig. 4.9. Here every frequency is less than the fre'qjleincy

Frequency -

e\
4 \’«

_ ‘D}tribution of incomes (£000s)

{7; Fig. 5.10. )-shaped distribution

10

in the pmx@o}zs group after allowing for differences in group
interva.]f;\\and the first group has the largest frequency. The fre-
quency\Curve that might be appropriate to such data is illustrated
in £2,5.10, and this form of curve is commonly referred to as a
Scshaped curve. Tt is often met with in economic statistics, ag it
8eems to be the frequency curve most appropriate to the dig-
tribution of incomes, rateable values of properties and so on
Extremelcacre is often necessary ag there may be a maximum valne
which is not quite at the terminal but whose presence is magked
by the method of grouping the data. For this reason it is g wise
- Preecsution, when selecting data that seems to come from g J-shaped
distribution, to nse a rather finer interval for the part near the
maximum than for the other parts of the distribution,
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58 The frequency curve is a useful eoncept ag it enables the
broad outlines of & distribution to be discussed and comparisons
to be made without going into a lot of detail. The ecurves deseribed
here are only indicative of the broad range of possibilities. The
three most common forms met with in practice are (1) the sym-
metrical or bell-shaped, (2) the moderately skew, and (3) the
. extremely skew or J-shaped, curves. The frequency distributions

- observed will not always fall exactly into one or other of these
types, which are by no means exhaustive, and many practical,
examples will differ from the curves discussed here. In the following
chapters a great deal of emphasis will be placed upon the s;g’écié:l
~ bell-shaped distribution mentioned in section 5.3. This arigen.quite
naturally as the true frequency curve for many varighles and is
approx:mately true for others. It thus occupies a eentral position
in statistical theory.

Although this concept of a hypothetmal limiting frequency
ourve underlying any variable has enabled goide rough and ready
comparisons to be made between frequenty distributions, there is
still & need for further concepts that W]Jlsummacnse and represent
the data with greater detaﬂw\y‘\glaﬂp@&ﬁgpgr)thpghﬁlghts of two
groups of schoolboys may give nise'to frequency curves of exactly
the same shape and yet all the ‘boys of one group may be 3 in.
taller than the correspondmg hoys in the other group. Or again,
the general shape of tiKo\dlstnbutlons may be the same but one
Way seem more widely spread than the other. To deal with such
differences some yhantities which locate the frequency curve and
describe its spréatt’ on the scale of measurement are required. This

problem will(be tackled in the next two chapters, where various
quantitigasfv}hieh may be usefully caleulated will be deseribed.
e EXEROISES

5. f Take the distributions that were given in the following exercises
of chapter 4 and draw what you consider is the corresponding form of
frequency curve:

4.4 Deaths per day recorded in The Times;

4.8 Incomes in 19044-5;

4.9  Age distribution of population;

4.10 Deaths of infants under 1 year old;

4.14 Heart weights;

4.14 Kidney weights;

4.15 Span;

4. 15 Forearm length.
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8.2 Select a page of the telephone diréctory that is free from advertise-
ments and count. up how many telephone numbers have 0 as the last
digit, Carry out the same procedure for telephone numbers ending in I
and 8o on up to those ending with 9 in the last digit. What form of
frequency distribution would you expect to get, and does your actual
distribution conform to this? I not, discuss reasons why it does not do
s0 (cf. exercige 2.24),

5.3 Repeat the previous exercise this time taking the last digit of the
registration mmmber of cars passing along a road. See whether this
distribution varies in shape from that of the last exercise,

54 In co-operation with your physics department arra.ngg.to\ keep
a record of the rainfall per day over a period of .a,bout’ two months
(60 days). Draw a histogram from the results and heneq deduce the
form of the underlying frequency curve. e\

If possible repeat the whole procedure at a different time of year and
see whether the form of the frequency curve hay shanged at all.

) . . #, ) .
5.7 I:usts giving thg:@t‘eable values of housés are available in loeal
Couneil offices, Using these lists compile a frequency distribution, for
one ward of a borgugh, of the rateable values. A suitable grouping to

a }-a,thpr ferent character from the first) and see whether the under-
lyingdtequency curve is different, and, if 80, in what ways it differs,
{ '\ »

4 \ ™ '
Q 3
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6.1 The preceding chapters have brought the investigation of a
statistical problem to the stage where the data have been collected
in an observer’s notebook, reduced to more manageable proportions,
by means of tables, and the salient features portrayed by means of
diggrams. The next stage is to attempt a summary of the dagé by

the calcula;tidfi:__cﬁ a few representative values that size it ap and -
enable comparisons to be made swiftly and accurately~betwéen
onie set of data-and a:ﬁfit]iil;frﬁst a8 & town electso\a(l\{[ember of

S
(BristoD)
. \ .
¢ ¢ * 'xi\\' .
. o8 "~ L
(Aberdeen)
| T j T by J ' I
58 59 60 &l difidulibrafd org ift 65

Fig. 6.1. Heighta of schoolboy= ﬁr:@'m Bristol and Aberdeen in inches -

Parliament to the House ofCoinmons at Westminster to represent
its views and opﬁﬁong'\;io ‘these values are selected in order to
represent a given sefrof data.

For example, m\agme that five schoolboys, aged 14 yfaa,rs,'h&ve
been chosen from.amongst those in Bristol and that their heights,
meagured I'Qi}xéhes, are :

LV621 591 647 583 616
A Praeiis'ei& gimilar procedure is carried out in Aberdeen and the
fivl Beights obtained are

614 621 618 - 647 620,

" The question asked is whether there are any differences between
the two series of heights. A dot diagram given in fig. 6.1 brings
out the fact that the Aberdeen heights are slightly greater on the
whole than the Bristol heights. What is now needed is some overall
measure to deseribe the general level of the observations, and for
this the moss commonly employed qus_mtity is the mean or arith-
metic average of the observations.
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The ealeulation of the mean is a straightforward operation. The

individual observations are added up and the total thus obtained
is divided by the number of observations. Each individual value
plays an equal part in the determination of the mean. Carrying
out this procedure gives the following results:

Bristol:  Sum of observations:
o 621+ 5914 647 +- 563 + 61-6= 3058
Number of individuals: 5 )
Mean = 3(305-8) = 61-16. \

N

Aberdeen. Sum of observations: <\
61446211 61-84647+620~3129 O
- Number of individuals: 5 N
Mean = ${312-9) =62-58. £

Tt will be noticed, as indeed was expected, that the Aberdeen boys
have ahigher mean height than the Bristolbays. The mean provides
a meaaure of the general level of helghts and acts as a kind of
précis of the data. Naturally information is lost by giving only
the mean of a set of numbers maﬁead of the numbers themselves,
but nevertheless it is often very valuable to give an idea of the

general level of some W}gi andobhenmean.- is readily available
for this purpose.

In comparisons it d&;ﬂ not matter if the two groups to be com-
pared have uneq’ngl numbers of observations, as the method of
obtaining the nidan eliminates such differences. Suppose in Aber-
deen seven boys were measured and not five ag before and the two
addlbmna.l\hexghts were 63-6 and 61-7. The revised mean will now

be %\138 *2 ot 62-60 and this figure can still be legitimately com-
pa.rad\mth the figure of 61-16 for Bristol.

(? 2 The mean is extremely simple to caleulate, but in order to
' avoid large numbers and heavy work there are various short cuts

that are often ernployed in the caleulation. First, if all the values -

are large, 2 constant amount can be subtracted from each of them.
The mean ie then found from the modified valnes and the constant
amounnt finally added on again. Thus if 55 were subtracted from
the five Bristol heights of section 6.1 they become

| 71 4l 97 33 68,

The mean of these five values is 6-16 go that the mean of the onglna.l
values will be 55 6-16, or 61-16 as before. In this case there ig

A
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very little saving but when there are many more observations the
saving is much greater,

Example 6.1 Suppose that the mean height of the hundred school-

boys given in table 3.7 (p. 26) is requlred A constant amount of

80 is first subtracted from each height giving table 6.1. It will be

noticed that as some of the heights were below 60 in, they now

appear as negative quantities. This does not in any way affect the

argument and ensures that the numerical magmtude of the revised ,
quantities is kept as low as possible.

Table 6.1, Heights in arbitrary units « M

33 —-19 38 1.4 54 23 14 68 0. o1
00 46 11 29 06 —07 62 12 420 24
59 20 61 —I1 41 42 13 O08UNT0 50
31 37 1.8 43 26 —57 32 34\V 18 47
~0-8 23 07 56 L1 38 05 28 41 19
40 17 45 13 02 12 63,296 83 23
67 57 28 49 27 22 9\ 26 30 45
24 79 34 43 31 —03 % 58 04 28
17 24 19 38 L6 2L\ %0 44 20 15
26 32 21 28 34 21 13 39

A ary g in

The gum of the positive numbers is 281- 1, and that of the nega-
tive numbers — 17-6. Heneeqn the arbitrary units which have been
| adopted the mean is \\ 142811 — 17-6)
.:\' > 3(263-5) = 2:635.

It is now ary to allow for the fact that before caloulating
the mean %0 was subtracted from each height. A moment’s

: I‘Gﬂecho:g ‘shows that this will make the mean value in the arbitrary
unifs, 60 in. too small. Hence the true mean value is

60+ 2-635 = 62:635 in.

This may be verified by adding together the original values in
table 3.7, The general rule is that if a constant amount is sub-
tracted from every observation to form a new series of observations,
then the mean of the original observations is the mean of the new
serieg plus the constant amount that has been subtracted from
each observation. Clearly care should be taken in the selection of
the constant amount that is subtracted. A glance at the data will
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usvally give a rough idea of the magnitude of the mean, and if the
constant amount subtracted is near this approximate mean, the
magnitudes of the new values will be kept down to a minimum
and hence simplify the arithmetic. It will, of course, make a
significant proportion of the revised values negative but this is no
handicap., '

6.3 The data whose mean is required will not, however, always
be available as & series of individual values. Often theonly
Information available will be in the form of g grouped frequency
distribution. Thus instead of the hundred individual heights of
- table 3.7 the only information available might bethe grouped

frequency distribution given in table 3.11. Frou this table it is
roquired to caloulate the mean height. O

It is clear that by putting the observatiods into groups a small
amount of information hag been logs, Eérinstance, from the table
twelve boys had heights between Géénd 65 in. but their exact
heights are no longer known. Thiis some assumption has to be
made as to how the heights are.§pread within the group, and. the
most straightforward ags tion is that the hei ts are spread
evenly. If there a¥e on 3?"&%%}%&5%%0 that ea.lg}]; group GI())VBI‘S
8 very wide range of the variable, thig assumption is not very
good; but, provided {hat thers is a reasonable number of groups,
it should not Ieaid\tb any appreciable error. If the observations
are evernly spregdover a group this is equivalent, for the purposes
of calculating & mean, to their being concentrated at the central
value of ghé\group, since any values g given amount greater than
the cefityal value are exactly counterbalanced by an equal nuraber
of ygiiues the same amount below the central value. Hence the
_ Seutribution to the mean of the combined set of values is identical
< With their contribution if they had all been at the central value.
Making this assumption, the mean value deduced from table 3.11

will be
Toa(l X 54541 x 55:5 + 1 x 575

| +F2XB8B+ ... +1-5 % 67-54 1 x 68-5
=1$(6263) = 62.63 in, __ - ¥ )
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groups. The value 62-63 obtained here should be compared with
the value 62-635 obtained by using the original full set of values.

In general the larger the number of observations and the finer
the interval of grouping, the more accurate will be the final mean
calculated from the grouped distribution.

64 The arithmetic of the caleulation for & grouped distribution
van, however, be simplified further by making use of what is termed
an arbitrary origin, which is equivalent o the previous method of~_
subtracting a constant amount. To use this principle a groupjn
the centre of the distribution is chosen and nominated as zeré‘ In
this particular instance the group of 61-62 in. has been taken The
groups on either gide are then re-labelled using the group 81-62 in. '
as a new origin of measurement. Thus the next group{mbéve, 62-63,
becomes -+ 1, the group above that, 6364, becomes.4- 2 and so on.
~ Similarly below the centrre the group 6061 bgc{@aes — I whilst the
group 59-60 becomes —2 and so on. Thege(are used as arbitrary
units and are shown in column (2} of tahle’6.2. Column (3) gives
the number of boys within each group; and is taken direct from the

Orlgmal table. W ‘dbrauhbl ary.org.in
Table 6.2. Oalcw?latwn of mean

(1) 2),L {3) 4

Height Arbm}ry No.of -  Product
(in.) \xgms schoolbays (2) % (3)
54 88 1 -7
55-56 L) -8 1 -8
5657 N —5 0 0
57-58 \u 4 1 —4 L —405
5850, L -3 2 —6
59°60. -2 45 -9
635\{1) -1 85 —85
L6162 0 19 0
W) 6263 1 22 22
\ 37 6364 2 ' 15'5 31
. 6485 3 12 36
65-66 4 65 26 | 1535
6667 5 45 295
67-68 6 L5 9
65-69 7 : 1 7
Total 100
Tina? total 113

Thenextstepisto ealeulate the mean of the distributionin the arbi-
trary units. Using the method adopted earlier this would be equal to

I x (=) +1x(—6)+1x(—4) ...+ 1-5x6+1x7T)
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and will thus require the sum of the products of cohimn (3) with the
corresponding ftem in eolumn (2). Acocordingly a fresh column (4)
is formed giving these produocts. Column (4) is best summed in
two parts, the negative part followed by the positive part. These
two results are added together giving, in this case, 113. Hence
the meean in the arbitrary units is 135{113) or 1-13. Now zero in
the arbitrary units corresponds to the middle of the 61-62 group
in the original units. The middle of this group will he at 61-5in.
and hence the mean in the original units will be Q

81-5+1-13 or 62:63in., O

which agrees with the result already obtained.

6.5 The larger the number of observations, duwolved the more
powerful becomes this arbitrary origin meéthod. It is essential
that there should be equal group mterm\ls throughout the dis-
tribution, otherwise the arbitrary umt%mll falsely represent the
groups, In'the example just discuséedd the group interval was one
inch throughout. In cases where'thé group interval is not one unit-

the method has to b O TH
¢ X:z;h o 8 ?M we\fhﬁh bn ard}}%%,l as shown in the next sho

Exomple 6.2 The da.ﬁs. in table 6.3 give the yield of barley per
acre for fifty farms\USmg thesame principles as before an arbitrary
origin is placed; ag the group 19-19-5 and arbitrary units allotted

to all the groups " Using these arbitrary units the mean yield comes
to be -5—-(——\7} or —0-14,

Q¥ .
\ _ Table 6.3. Yield of barley per acre
~O o @ {3 {4)
Yield Arvhitrary No. of Product
{ewt.} . units farma {2) % (3)
18 ~185 -2 3 -8
18-5-19 -1 14 —14] %0
18 -18-5 0 21
10-5-20 1 1 C o
20 -20-5 2 1 2} 13

Final total _ —7

Tt is now necessary to relate this mean to the original units.
Firat the arbitrary origin of zero corresponds to a yield of 19-25 ewt.
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and hence a mean of zero in the arbitrary units would correspond
t0 19-25 owb. Similarly a mean of —1 corresponds to 1875, or
19-25—-1x 0-5, and a mean of —2 corresponds to 1825, or
1925 — 2 x 0-5. Thus by simple proportion a mean of — 0-14 corre-
sponds to 1926 —0-14 x -5 or 19-18 cwt., which is therefore the
required mean. _

The whole procedure can be expressed ag a rule. Let % be the
group interval (4 was equal to 1 for example 6.1 and 0-5 for example
6.2). Then the mean in the original units is

arbitrary origin + (4 x mean in arbitrary units).

6.6 The grouping adopted for any particular set of data is baind
to introduce, as has been stated, some form of error or approxima-
tion. In practice it is found, however, that provided the'precedure
outlined above for the selection of groups is followed{ the resulting
error will be insignificant. For example, in the heights of school-
boys the true mean was 62-635 in., whereas the’mean caleulated
from. the grouped distribution was 62:63. THe error introduced by
the grouping is therefore — 0-005 in. As thedieights were originally
measured only to the nea,rest tenth of ah inch, the error can be
seen to be trifling compared Wi ‘ﬁ‘%ﬁ‘@%‘é%ﬁ}%ﬁ"&f measurement.
If the group interval were smaJlg;r, and congequently more groups,
the error could be expected tohe even less, but if the group interval
were increased the error might also increase. Hence the general
conclusion is that, provided the groups are not too wide, no ap-
preciable error will be‘introduced by caleulating a mean from the
grouped distribubion’nstead of from the original observations.

If the ongmal\observatwns can take only a definite set of values
such as the\ini:egers (0, 1, 2, 3 and so on} then the method used
for groupéd data above can be directly applied to calculate the
mean~No grouping takes place so no grouping errors are com-
mitted, This is the situation in the next example.

" Table 6.4. Distribution of Spergularia rubra

No. of plants (%) 0 I 2 8 4 Total
Noe. of squares with % plants #n them 124 76 33 17 2 252
(D&ta due o H. Barnes and F. A, Stanbury.)

Emmple 6.3 Table 6, 4 gives the number of plants of Spergularia
rubra that were found in 252 squares, each of umit size, on the
Devonshire moors, and it is required to find the mean number of

L3
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~ plants per square, The mean number of plants per square will be the
total number of planis found, divided by the number of squares in -
which they are contained. Now

Total number ofplantazllx T6+2x3343x17+4%x2=201,

ginee 76 squares haye just one plant, 33 squares have exactly two
plants and so-on. Hence the mean will be

E—«B—(QOI) =0-7976. ~
This is an exact result, except that the fraction has been gyaluated
ouly as far as the fourth decimal place. There are no egrbrs due to
the grouping of the data as there can be no values inbetween the
integers. o\l
WV

6.7 Although the mean is by far thelthest commonly used
measure of central tendency of a distribation and will often recur
in the later parts of this book, two other-measures of average value
are sometimes uséd and should beunderstood. The first of these
iy the medion. This is defined &s.'8 value, x, such that half the
observations are greater than'm and half the observations are
smaller than . Eﬁr‘ﬁ:&‘ﬂhﬁiﬂé RPN S8 of the height of sehoolboys
it is required to find seme height z such that 50 boys have heights
greater than « and 50.boys have heights less than . This ecould be

found by trial ‘khd error. Taking the original table of heights,
table 3.7, it ig ‘found that

26 boys have he1ghts helow 61-5 in.
48 boys have heights below 625 in.

) ’~."\ . 68 boys have heights below 685 in,

~ Jfrom which it can be dednced that the median is just above 62-5 in.

" Ifa count is made of the number of boys with heights below 62-6 in.
that is, up to and including 62-5 in., there are 49 of them. Henoce
if $he beights of the boys are arranged in aseending order of mag-
nitude, the 49th boy will have a height of 62-5 in. and the 50th
and 518t boy will both have a height of 82:6 in. If z is taken to be

- 62:6 in., then 50 boys have heights less than z and 50 more than ®;
thus 2 is the median. ITun general if there is an even number of
observations, as in this case, the median is taken as the average
of the two central values which may or may not be the same, Thus;

X
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with a hundred observations the median is ta,ken as the average of
the 50th and 51st observation.

If the number of observations is odd the median is taken ag the
middle value. For instance, if there were 101 observations the
median value would Ke the 51st in order of magnitude, as there
would then be 50 observations both above and below the value,
Thus the median value of the five Bristol heights in section 6.1
would be 61-6 since 59-1 and 58:3 are below this value and 62-1
and 64-7 above it.

6.8 There is another method by which the median may be faund
which is of especial use in large distributions where the loegtion of
the middle value can be very tedious. To use this method ;t s first
niecessary tG construct a.cumulative ﬁ"eguemy d@smfmtzon This
is done in table 6.5 (using the data of heights from table 3.11).

The table gives for each height the number of boys whose height

is less than or equal to that value. ,.‘\
3
Table 6.5. Cumulative distyibubion of heights
Height | No. of WWW. dbl atlélgiety .org.ilNo. of
(in.} boys S M ) baya
Up to 55 1 Up to 63 59
Up to 56 2 L Up to 64 74-5
“Up to 57 2 \ Up to 65 86-5
Up to 58 ' - Up o 66 93
Up to 59 \ \\5 Up to 67 975
Up to 60 ) 95 Up to 68 99
Up to 815,77 18 © TUpto 69 100
Up to 2.0 37
A graph &an be plotted of this table. Height is put along the

honzonba,l axis and numbers of boys froii 0 to 100 along the
vertmal‘ axis. Points are then plotted corresponding to the heights
and numbers of boys in table e 6.5, These points are then joined by
Stralght lines, giving the cumulatwe distribution diagram shown
in fig. 6.2,

! This diagram provides & very useful means of obtaining various
! values that do not appear directly in table 6.5. Thus from the
' diagram it can be estimated that the humber of boys whose height
[ is less than 64-5in. is 80. This is obtained by reading off the
| diagram the ordinate of the point on the graph corresponding to

84-5 in. along the horizontal axis. ..
s - . MP
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- For the median a value is required that cuis the observations
in half and is, therefore, between the 50th and 5lst values. For
all practical purposes the median can be taken as the value
corresponding to 50-5 on the vertical scale, that is 3(50+ 51), thus
‘necessitating finding only one value. In this case, uging a some-
what larger scale diagram than that shown, the median again
comes to 62-6 in, This g;&gh;cal_me;ffhod_ghould be applied only

100
o N\
. \
o L ¢\
w80 Ny
g O\
g AN
& R
g 60 - (¢ 7
3ok D
2 \
' 201 .
A Y
Z AN .

_ W W, ulikrary.org.in

0 1 N - 1 1 |
5 s\ el 63 65 67 69
\§ Height (in.)
Fig .2. Cumalative distribution of heights

f%ﬁm@ncy dlstrlbutlons in which it is diffieult to

ring the central value by any direct method; for exa,mple
whan the group Misrvals are 4l different,

a\ E 9 'I‘he third and last measure of central tendency to be con-
sidered is the mode. As the word itself implies the mode is the
most - frequent or most ‘fashionable’ value. To take a simple
iltustration, postage stamps are available in various denominations
from a halfpenny upwards, but the threepenny stamps, being
those required for ordinary inland letters, are used by far the
mogt, Henee in the distribution of sales of postage stamps by
denominations it is the modal value. From this it follows that in the
case of a discontinuous variable which ean only take certain values
the mode is defined as the value which oceurs most frequently.
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Bzample 6.4 Table 6.6 shows the results of a count of tentacles
of 869 individuals of Hydre vulgaris Pallag given by Lui and Chang
in a letter to Nature (1946, p. 728). The number of tentacles
that occurs most frequently is 6, so this is the modal value. The
student is left to verify that the mean number of tentacles is 6-14
and the median number is again 6.

Table 6.6. Distribution of tentacles. of

Hydra valgaris Pallas
No. of tentacles 3 4 5 & 7 8 9  Total
No. of hydra 1 .2 61 648 132 24 3 889\

The determination of the mode of a continuous variablé stch as
height raises & more difficult problem, because if the measurements
of height were made with sufficient aceuracy, it might well be that
no two of the measurements would be the same. To'give the central
value of the group containing the greatest ﬁ'e‘s}uency can be mis-
leading, as this will depend on the choice~of scale for the group
mtervals. If the intervals are made smaller to avoid this difficulty
the frequencies in the groupswilltthelibbecpme small and the
distribution irregular, thus makingit difficult to locate the mode.
However, these difficulties can Je overcome if it is remembered
what was said in chapter 5{)11 frequeney curves. The mode, being
the most common V&l\ eorresponds to the peak or highest point
of the frequency curye. earmg this in mind, a reasonable guess
as to the mode cambe made by using the grouped frequency dis-
tribution to vig éﬁse the underlying frequency curve. Thus from
the distribution-of heights in table 3.9 it can be seen that the mode
oceurs somgewhere in the group going from 82 to 63 in. As the groups
on e1the‘r wide of this one contain about equal numbers the mode
Pl“Oh@b]y lies at about the middle of the group, that is at about
62-5.4n. Tt is impossible in such cases to determme the mode any

more accurately

6.10 Tt is interesting to compare geometrically these three

measures that locate the distributions. For the symmetrical dis-

tribution of fig. 6.3 the three measures will all coincide at the central

value. The central value must be the mean as every value above

it is counterbalanced by an equivalent one below. As it is also

the value that outs the distribution in half, it must indicate the
. _ 6
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median, sand being the most cornmon value it is thus the mods as
well,, When there iz a skew form of frequency ourve such as I
fig. 6.4 the three measuves do 1ot coincide any longer. This illus-
trates how necessary it is to use the same measure when comparing
two distributions ; #f this is not done like will not be compared with
like. . :

Of the three measures of central value or location discussed above,
the one that will be used almost exclusively in this book is the

QY

Frequency

& i |
]S
3

™ Value of variable
N\, Fig. 6.3. Symmetrical distribution
A

mean. I Is\the only one of the three measures which makes com-
Plete uge of all the observations and hence it can be expecied to
be m&e representative of the whole distribution than the other
two essures, The median and the mode are often, however, found
“\with much less work, and there are occasions when they are of
more uge than the mean. For instance, it sometimes happens that
the exact values of a few extreme observations are not known,
and in such a case the mode and wmedian can still be found,
although the mean cannot be evaluated. In exercise 4-9, for
example, the mean ages of males and females cannot be calculated,
but the two mediana conld be found and compared.

In some situations the mode is the most useful thing to know.
It is commonly said that the ‘average’ family has two children.
This figure is nof the mean number of children per family., In
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fact the mean does not turn out to be an exact integer and a mean
family is thus impossible to imagine. The statement implies that
more families have two children than any other number of children,
and hence it is the modal number of children per family. This fact
is relevant in the building of houses for it is obviously important -
to meet the needs of the most common size of family and for this .
purpose the mode is required. But again the mode by itgelf is not
enough, since some families have one or three children and so
different, sizes of house are required. Thus it is necessary to know..
whether all the observations are concentrated at the mode on

A\
N\
s W
1 " (‘.:‘.
1 '
| A~
g { [ 8
b
8 | \
g Lo N
= I I ~
I 3
L NS
I ! [ v N
t A—r—<rewadbraulir; -
. RN
Q
Mean __—-——'-,"—"}'1
. Tig: 6.4, Skew distzibution
und the mode.

: A ~\. 3 .
whether thereigsdme spread of the observations aro b
This requiréds knowledge of the dispersion of the observasions and

will be cépsidered in the next chapter.

N .
\ ) EXERCISES
The means, medians and modes of the various dish-_il?utions studiec! in
earlier chapters should all be calculated wherever pqsauble. T'he eXorcises
suggested below by no means exhausb the material that is available

from the earlier chapters.

6.1 Using the data of exer;:ise 4.4 calcalate the mean number and the
modal number of deaths recorded per day.

6.2 From the data of exercise 4.6 calculate the mean number of school
certificates and higher school certificates awarded per year.
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63 Uamg the data of exercises 4.14 and 4.15 caloulate the means and
medians of the four quantities involved. Carry this out: - '
{a) from the original measurements;
{b} using an arbitrary origin;
{¢) by e&lcula,uon from a grouped frequency distribution,

64 From the data. oollected in exercise 2.23 find the mean length of
the piece of line marked off.

6.5 Use the data collected in exercise 2.25 to find the mean and modal
length of sentence for the various anthors studied, ~

6.6 The table gives the diastolic blood pressure of 250 menThe
readings were made to the neareat millimetre and the eentralxy}a,lue of
each group is given.

.\

Blood Blood N
pressure : preasure AD
{mm,) No, of men (mm.) . ‘m.‘l‘ﬁ). of men
60 4 80 ’ 114
85 5 85\ 30
70 31 80’ /> 25
15 39 ;9} 2

Caleulate from the data (2) the mean, (b) the median; and {(c) make an
estimate of the mode of the dlstubuhon

6.7 The fc}llomg%ﬂ,h’léugﬁ%‘}%ﬁ%‘ W84 of 1000 men to the nearest
pound:

Weight (Ih.) gb?o}of men Weight (lb.) No. of men
Under 100 \'\ ~ 8 180-199 212
100-119 43 200-219 : 144
120-139 N\ 93 ' 220-239 40
140-158.C7 191 Over 239 8
160—1{&' 263 Total 1000

{a) altulate the median.
{8), Estimate the mode of the distribution.
(pj It is impossible to calenlate the mean directly from the data but

N by making reasonable sssumptions for the end-groups calculate the
/ mean a.nd compare it with the median and mode,

68 In a factory a lathe has boen set to produce 1 in. screws. The
following table shows the lengths of 800 secrews, measured to the nearest
one-thousandth of an inch.

Length {in.) Ho. of screws Length (in.} No. of serews
0993 3 0-999 i a4
0-004 26 - ) 1-060 19
-995 .+ BB 1-001 8
0-996 ) 160 1-002 1
0097 . _ 230 1003 1

0-998 ‘ 169 Tatal 80§
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. .
~_ Calenlate the three types of average for this distribution and compare
the results, '

6.9 The following table from the New Survey of London Life and Labour

(1934), gives the family size of 484 working-class families in Kensington

in 1928, : '
: _ 8 and

No. of persons 1 2 3 4 5 ] 7 over Total

No. of families 70 112" 104 84 43 41 18 12 484

(2} Calculate the mode and median of the distribution. )
{6) By making reasonable assumptions, saggest limits within which
the mean will almost certainly lie and compare these limits with 1;he\_
results obtained under (a). ' ' BRI

6.10 Calculate the mean, median and mode for the'ages of(Ai’:;érican o

railroad male employees who were members of a retirepsgub scheme

in 1944 (data due to R. J. Myers). ' ."‘;\\

Age No. of men Age L\ No. of men

(years) (thousands) {years) ¢ { (thousands)
10-14 1 - 45448 ) 204
15-19 239 B 5052 264
20-24 225  www.dbi@@dibrary org 23
2629 261 w\ V6064 150
30-3¢ - 283 0N 6589 82
85-39 284 N3¢ T0-T4 13
4044 ©osa 0 Total 2674

o\

6.11 Calculate the mean’,\'ﬁlédian and mode for the number of bracts
on specimens of wild dafyot collected in Michigan (data due to W. D.
Baten), O .

No.of bracts . (% 5 6 7 8 9 10 1112 13 14 15 16 Total
No. of specipagms” 1 7 8 41 303 224 140 127 93 52 1 2 1 1000

6712..\3?11’6‘{&1)19 below, taken from W. G. Cochran, gives the number
of patients who drop out of a clinic roster in two-month periods.
Calculate the median time that a patient remains on the roster.

" No. of | No. . No.of X No.
months dropping out months ¢ dropping out
0-2 81 12-14 12
2 4 23 ) 1416 11
46 14 - 16-18 6
6-8 13 ' 18-20 &
210 . 17 . 20-22 4

10-12 14 Over 22 52
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6.13 The shoulder widths of fifty-six three-month-old infants are
tabulated bolow. Caleulate the mean, median and mode for the dis-
tribution (data due to N. Bayley and F. C. Davis).

Shoulder No, of Shovlder No, of

width (em.} infants _ widih {em.) infants
14-4 1 16-5 10
147 1 16-8 3
16-0 3 171 i3
15-3 2 174 2
15-6 4 17-7 4
159 5 Total &6

15 N

16:2
6 14 A group of 5000 drivers sustained the numbers of a.ceadents given
below. Caleulate the mean and median for this dmtnbutvloh Why does
the mode not coincide with either the mean or the me(ﬁa;n?

No. of accidents ¢ 1 2 3 4 & ,&} 7 Over7 Total
No.of diivers 3140 1202 423 155 50 150\ 3 7 5000
\,

6.15 Estimate the mean and median of\the following distribution of
sales per tobacconist shop, stating ahyvassumptions you may make.
The data are taken from the 1950 Qensus of Distribution.

Salgs (£) dbr aupbrary oIt tobacconists

Under 1,000 . %5 1149
1,000-2,500, 1,008

2,500-5, 00D 1,177

5 00046;000 2,434

10 03@35 000 3,480
25,000-50,000 885

¢ Bver 50,000 161

:t\"'
:"\.‘.
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7

MEASURES OF DISPERSION

7.1 The last chapter described in some detail the concept of an
average and how it can be calculated. But, as was stated there,

the average by itself is not sufficient to describe a set of data,

completely, nor to make valid comparisons between two sets of
data, Two illustrations will make these points clear. . .;_f\

A politician states that the average weekly wage in mdusﬁ'y X
is £8. 3s. 6d. in comparison with a minimum weekly wage of £7
in industry as a whole. This, however, may or may nog beindicative
of a satisfactory state of affairs. If all the workerlearn £8. 3s. 6d.
then all are above the minimum of £7. If, however, 609, of the
workers earn £6. 10s. 0d. per week and thKie\tﬂainjng 409, earn
£10. 18s. 9d. per week, then the average‘or mean wage is still at
%8. 3s. 6d. even though some 60 %, of, the workers earn less than
the reasonable minimum Wa‘g%ww dbrauhbl ary.org.in

Again, imagine two cricketers4 and B. Both cricketers have
an average batting score of 50, bitt wheréas in ten innings cricketer

A achieved scores of ..\.
O

0, 112‘§7 4,76, 1, 88, 102, 14, 6,

the scores of cnc];qﬁer B were
4271, 51, 39, 60, 44, 58, 47, 51, 37.

Thus crickl%'r A seems to make either a very low or a very high
score every time that he goes in to bat and since he does each about
any eqm number of times his average comes out to be 50. On the
othéf hand cricketer B appears to be a much steadier player. He
rarely makes a duck or a century but nearly always gets a score in
the range 35-65 and his final average is once agam 50. Here, then,
.are two cricketers with the same average, bub the information
about their Tespective scoring ‘abilities which is given by their
averages alone is. misleading, as it gives the impression that the
two cricketers are the same. In fact cricketer 4 is not nearly as
reliable a batsman as the rather steady cricketer B. To overcome
this difficulty use must be made of some measurement that sum-

N\
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mariges the spread of the distribution of the scores. The scores
made by cricketer A have s much larger spread than those of
- ericketer B and thus any measure proposed should bring out this
distinction. As in the case of central tendency there are several
possible measures, which will be described in urn.

7.2 The first measure is called the infer-quartile distance and its
caloulation is somewhat analogous to the procedure used in the
caleulation of the median. The median was defined as the value
such that 50, of the observations were above and 50 %, below it.
Suppose now that each of these two halves of the obserydtions are
further split into two equal parts. There are now fourparis to the
distribution and each part contains 25 %, of the obaewa,tmns Then
the value below which just 289, of the obsermﬁmns fall is called
the lower guartile, ¢, say, and the value ghove which 25 9, of
the observations fall is called the upper (kartﬂe Q. Clearly 50%,
of the observations fall between §, and @y "Then the inter-quartile
distance {1.q.0.} iz defined as $ ,\

- 1.G.D = Qs. N
and is the distance between, the upper and lower quartiles. This
quantity is very wﬁbm)hhlw Hi8factice and has a simple
meaning, as it is the gpread that will contain the central half of
the observations. Thiéxsystem of formulation also ensures $hat the
Ineagure is not I}Q&et by any extreme or freak observations that

could not be called representative values. The possible methods of
caleulation, elo*sely resemble those used for the median.

E’:cample )I‘l Table 7.1 gives the number of acoidents sustained
by ]Y\iﬁ forry drivers over a long period of time. To calculate the
inter-quartile distance it is necessary to find Q, and Q,. 25°%, of

& the total number of observations, 166, is 41% so that @, could be

) taken as being half-way between the 41st and 42nd observations
when arranged in order of magnitude, and @, as being ha,lilway
between the 124th and 125th observations in ordér of magnitude.
By counting, or by forming a cumulative distribution from the
data, it is found that, when arranged in order of magnitude, the

~ Algt observation is 5 124th observation is 10

42nd cobservation is 5 125th observation is 10

Hence : Q=5 Q=10
and the inter-quartile distance is @, — @, = 5.
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Table 7.1. Accidents sustained by drivers

No. of No, of No. of No, of
accidents drivera gceidents drivers
0 1 11 - 9
1 a2 12 6
2 3 13 2
3 14 ’ 14 6
4 17 15 1
5 21 16 ' 8
8 17" E 17 3
7 14 : i9 2
8 C 14 21’ 3 O\
9 12 Total 166 ™
j11] 13 «

s
N

Ezumple 7.2 To find the inter- qua,rb]le distance foKthe observa-
tions of height given in table 3.7.

These heights were plotted in the form of a curmilative frequency
distribution in fig. 6.2 and the graph was th fiised to estimate the
509, value for the median. The same graph can now be used to
estimate the values of ¢, and @, by finding ‘the height corresponding
to the 259, and 759, pomtswm;@ﬁbggﬁ?hlgl;p possible to

estlma,te that
| =61- -85, ‘ahd Q3_64 08.

‘Hence ' \.\Qsp Q,=2-701 in.

The inter-quartile digbance is very useful when some of the values
. are not exactly speeified. For example, in & distribution of incomes
the last groughaay be merely labelled ‘incomes over £10,000° so
that it is diffteult to give any numerical value to the individuals in
that group for the purposes of calculation. In the inter-quartile
-dlst&nce however, it is not uznally necessary to know the exaet -
Vérhles in the end groups. A disadvantage of the 1.Q.p.’is that it
does nat make use of every observation, and a variety of rather
different-looking distributions could produce the same value of
inter-quartile distance. For this reagon the other two measures
to be considered make use of the numerical values of all the

observa.tlons

7 3 The next measﬁre to be discussed is the mean deviation. The
caleulation of this is best described in’ stages by using an
- exa,mple : .
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Ezample 1.3  Consider 'the sets of cricket, scores for cricketers A
and B given in section 7.1. The mean score for each cricketer,
* obtained by summing the scores and dividing by the number of
innings, is 50. Next subtract the mean score from each individual

8core giving
" Cricketer 4 ~60, 62,47, — 46, 26, — 49, 38, 52, _36, — 44,

Cricketer B —8, 21, 1, —11, 10, —6,8, —3,1, —13.

: ~
Tt will be noticed that for each cricketor the sum of the" ten
deviations from the mean is zero. This must be the case inge each
of the original scores can he regarded as being composed of two
parts, the average plus the deviation from the ayerage, and as
the sum of all the scores is ten times the averagh,the sum of the
deviations from the average is always zero, )"

Now since the sum of all these deviatioug 18 automatically zero,
 measure of spread cannot be based’Sn them as they stand.
If the magnitude of the deviations & wsed, Irrespective of their
. 8igR, a measure is obtained which isd guide to the spread of the
- Observations. This is called the man deviation and is obtained by
summing the dovimtions eapliRRsy Sre iy sign and dividing by

the number of observatiqnﬁtivolved. Thus:
Mean deviation forewicketer A
N
= (5}+62+47+ 46426+ 49438+ 52.+ 36+ 44)/10

\ £ .m= ) R ’
\\: 10 45, {..i.}w’
Mean deviation for cricketer B oo
A

R\ =4$2-8.9,
AN :
(Fhe mean deviation for cricketer 4 is, therefore, some five times
that of cricketer B. Thig Wwas expected as the spread of the scores
Was very much greater for 4 than it was for B,

When the data are available in the form of 5 grouped frequency
table the Recessary calculations have to be slightly modified.

Example 7.4 Suppose that it is required to find the mean deviation
of the heights of boys from the dats, of table 3.11, reproduced in

coluinng (1) and (2) of table 7.2, The mean of this distribution hag
already been calculated and was equal to 62-63, Column (3) then

ki
+
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shows the deviation of the centre of each group from the mean of

62:63. All the deviations are given & positive sign. The group
containing the mean is omitted from the calculations at this stage
and will be dealt with later. Column (4) gives the contribution of
each group to the total deviation from the mean and is the number
of observations multiplied by the corresponding deviation, and
hence is equal to (2) x (3). This column is summed to give 167-45.
To this figure must be added the contribution to the total deviation
from the group 62-63 which contains the mean. If the whole
frequency is assumed. to be concentrated at the mid-point of the
group, the contributions to the deviation from these observations
at the top and bottom of the group would not be given “pheir
correct weight and in the limiting case, when the mean voineides
with the mid-point, the whole group would Qontmbute, egroneously,
nothing to the total deviation. G

SO
Table 7.2. Calculation of meant\favﬁation

(1) {2) BN : 4
Height No. of ]}ewa‘hmn Product
(in.) schoolboys wwwiliithiresRary .org. @9 * (3)
5455 1 a0 813
55-56 1N 713 713
56-57 0 A 613 0-00
57-58 1L 613 513
5850 2 ) ' 413 826
58-60 AN 3 313 1408
60-61 A 85 2:13 18-10
6162 o 19 118 ' 21-47
62-63 N\ 22 ® *
63—64 (N 155 0-87 1348
8 )" 12 187 22-44
ﬁm 65 g 287 - 18-65
£8°67 45 3-87 17-41
SBT—68 1-5 4-87 7-30
"\; ./ 68-69 1 5-87 " 587
N\ Total 160 16745

Assuming, as a reagonable approximation, that the observations
within the group are equally spaced there will be
_ 22 % 0-63 observations below the mean in the group
"and 22 x 0-37 observations above the mean in the group.

Whereas the former will have an average deviation of §x0-83-
from the mean, the latter will have an average- deviation of
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$x0-37. Herico the total deviation from the mean of the observa-
tions in the group will be

22x 068X} x083+22%08Tx L x 037 -
' =11[(0-63)2+ (0-37)2] = 5-87.

This must now be added to the total deviation already found,
giving a final total deviation of 173-32, and (dividing by the total
number of observations, 100) & mean deviation of 173 in, A~
. If the original observations are available it is feasible fo ealou-
late the mean deviation using each individual by itself, Thé values
of ‘observation minus mean of observations’ are fornmed and then
isregardi signs, This sum, divided By the number
oL SDBErVBOs; gives the muoan Qeviation (0>

7.4 The third measure of dispersion to be'defined is the standard
deviation. The computation -of this méagure depends to a large
extent on the form in which the dafa are available, and will be
illustrated by three examples that give the original data in rather
different forms. &Y

E:’cample 7.5 Réféf‘ﬁﬂ@éﬂ%%aﬁgtﬂ@ '12%0 cricketers of section 7.1
and write down the deyiations of each cricketer’s seores from the
mean as before. Underneath each deviation write its square,
Cricketer 4 \\

Doviations 60" 62 47 _4g 95 _,g 38 52 —36 44
(Dovintions) 2500 3844 2209 2116 676 2s0r 1oss 2704 1296 1936

Cricketer B/)
Dovistions' -8 g | _p; b -8 g _3 I —13
{Devighions) 64 a4 | 121 100 36 64 3 ] g
Vg *gﬂhe sum of thege squared deviations is now found for each ericketer.
Cricketer 4 : 21,128, Cricketer B: 1,006.

T1-1en the average value of these squared deviations will be ob-
tamed by dividing each of the tota] deviations by 10, giving

Cricketer 4 : 2,112-8, Cricketer B: 100-6
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so that the final measure has the same dimensions as the original
observations from which it was obtained. Thus - r (- 29 >

Cricketer 4 : /2,112:6 =460, s | AL
Cricketer B: 4/100-6=10-0,

and these are the standard deviations of the two distributions of
soores. As in the mean deviation the dispersion of cricketer B is
about one-fifth of the dispersion of cricketer 4. It will also be
noticed that the values of the mean deviation and standard
deviation are about the same. Usually the mean deviation is+
smaller than the standard deviation and js something like 80 % of,

it. This is not a rule but just an approximate guide which offen
helps to check calculations. In this case the differences between

the two measures are smaller, due to the rather pecu]iq.rjl)-sha.ped
form of distribution that ericketer A4 has for his scopes.

75 If there is a large number of observations the process of
ealculating the squared deviations can become very tedious, Some
short cuts are therefore used. Their form dépends on whether the
- variable concerned has a digerete, or, 8 dgjdntiﬂlous form of digtribu-

prau Lary .or

tion, 'The next example deals with adscrete form of dlstribution.

Table 7.3. Calowlatian of standard deviation

' of distribution of teniacles
() @ ® @ ®
No. of No.of\)  Arbitrary : :

tentacles hydea’ units - @x@ - @x@

3 O -3 -3 9

4 NV 2 -2 — 4} —88 8

5 L\ 6l -1 —81 61

8 O 646 ‘o ' 0 0

N 132 1 132 132

~& 24 2 48}; 189 06

\ 3o 3 . 3 9} 27

Totals 869 - L= 333

. Finsltotal 121

Ezample 7.6 This example uses the data comoerning tentacles

given in table 6.6, The firet four columns of table 7.3 are exactly
© a3 they would be for the caleulation of the mean which is first

caleulated giving .1w+@jﬁ'-ﬁ_.-

. ..869;53 T
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in the arbitrary units. To caloulate the standard deviation this
mean could now be subtracted from each of the eentral values,
the values squared and the squared deviations added up. This
would involve & lot of work, especially if there were a large number
of groups, and to avoid this an alternative method of formulation
for the standard deviation is used. This states:

{(Standard devia,tion)2=Average of the squared indi-
vidual values minus (mean
value)?, :

The statement is algebraically equivalent to the previd‘ua; gtate-
ment: A
(Standard deviation)“:Average value of- f(iﬂdividual
value minusg 1aedn)? for all the
observations v

y N

From the second definition it ean béfééen that the standard
deviation is unaltered if a constant aihount is added to any indi-
vidual as the mean is increaged bythe constant amount as well.
It follows that the standard deviation can be caleulated using an

arbitrary origin and the Emmgldrhﬁ ithe same as if the original

sum for all the gro\u})s Column (5) gives the appropriate values
for each group sizice (3) x (4) is equal to (2) x {(3)2. The sum of
this column 5883, Hence . '

I\ '
\{“Standa,rd deviation)2 — T69 X 333 — (0 1392)2
O =0-3832- 00194 = 0-363s,

28 standard deviation < 0-632 tentacles. No correction is re-

Nguired for the use of an arbitrary origin but it must he remembered
that arbitrary units are used throughout. For example, the mean
that is nged for subtraction is the mean in the arbitrary units and
i3 not converted back to the original units, "
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of individuals and let s represent the standard deviation of the
individuals, Now the deviation of one individual from the mean
is ' - &,

and if this is squared it becomes (x —7%)2. These squared deviations
are now summed, giving S, '

where 2. ig a symbol that represents the statement ‘add up all the

values of..."°. Thus E:;%Em if there ate » individuals.

. L\
Finally 82=$Z(x-—5)2: 1)
8% being referred to as the variance. This was the i‘qﬁmﬁl& and
argument used for example 7.5. In example 7.6 a slig}i‘tly modified
form of formula was used where \

. x.\\.
' 1 : . K
82=?—3’ Enz.wﬂ,__mﬁ, ‘”x\ {72)

and 7, is the number of observations\in a group for which the
variable has the value 2. Smw‘a%fg&bﬁfﬁg%agﬁgﬁﬁay be used, a
judicious choice of origin can offén considerably reduce the arith-
metic involved. Equation (7:2}\s the formula most commonly used
for the calculation of s, dnd, by taking n,=1, ean be used with
ungrouped data where‘eﬁc}l individual forms a group of one, giving
NO - gllys a (7.3)
O % |

When ea@é,ting the mean from a grouped distribution no cor-
rection waé required, as it was expected that any errors committed
by asstiming the individuals to be concentrated at the middle point
wohld cancel out. In the caleulation of the standard deviation
" from the grouped form of continuous distribution a slight correction
is required. This arises because the assumption that all the indi-
viduals are concentrated at the eentral value of the group gives,
In general, an over-estimate of the standard deviation. Hence

mst-e&d of (7.2) the formula used ig
| ss% S, 2R — B — hY, (7.4)

where  is the width of the groups in the distribution, For example,

7 MP
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h is L'in, in the case of the schoolboys’ heights in table 3.11. The
8quare root of (7.4) gives the standard deviation as before and the -
correction due to group width will usually be very small.

7.7 Ezample 7.7 The dats in table 7.4 give the carbon content,
expressed as a percentage, of 119 scoops of 8 powder. The central

- values of the groups are given in column (1) while the number of
8coops whose carbon content falls in each group is given in column
(2). Column (3) gives the arbitrary units. The origin is.tdken
somewhere in the centre of the distribution and the groutpsdabelled
+1, +2, and 30 on in one direction and — 1, —2and so\o}i'iu the
other direction. Coluran (4) gives the values of . ", , Where z is the
value of the group and n,, the number of individualgin $hat group,
Column (5), equal to (3) x (4), gives the values of 9%.n,,

Table 7.4. Coleulation of stangdipd deviation
o of carbon, congent,

A

& 2) ® O ()

Percentage No. of N
carbon samples N ‘
(eentral wigpe.dbra u | }EB% ?I' g.in .
)L gewp it (2) (3) (3 (4)
4845 1 A —4 _ 4 16 .
4745 S\ s ) 1o
4-845 % e —2 —ag [ 64 o
4945 ‘ o 3 - e
5045 R 0 . 7
SE N0 2 ! 22 22
5245 ¢ , 15 9 50 p”
554500 9 3 270108 g1
5§:§ . : 4 24 © 96
R 1 5 5 25
A\ Totals 119 — _ s
~ :‘\ Final total 44
\ 3}

is obtained by adding up eolumn (4). Similarly by adding up
column (5)

22% . m, =418,
Hence Mean = TIva% . Wy =A4 = 0-3697

1
and _ EExz.nx=T}—9.418=3-5126.



MEASURES OF DISPERSION 99

Qarbon content is a continuous variable that has been grouped
and hence equation (7.4) is the appropriate definition of standard
deviation. The value of 4 is equal to 1 because the calculation is
being carried out in the arbitrary units and for these arbitrary -
units the group interval is unity, Hence

s2=3-5126 — (0-3697)% — 0-0833
=3-2026  and s=1-8146,

thus giving the standard deviation in the arbitrary units as 1-8146.
The result must now be converted to the original units. Froffy,
table 7-4 it can be seen that a change of 1 in the arbitrary @it
corresponds to a change of 0-1 in the original units of percentage
carbon. Thus a spread of 1:8146 in the arbitrary units will corre-
spond to a spread of 0-18146 in the original units.\This gives the
“standard deviation of the original distribution as\D:1815 %.
. Next, convert the mean calculated in the athitrary units back
to the original units. Zero on the arbitraxy cale’ corresponds to
5045 on the original scale and a changg 6£1 corresponds to 0-1in
the original units. Hence the mean inthe original units is

wwwidbrauli brél"g,org, in

5045+ (0-3697)(041) or 508
Tn this caloulation arbitrary nits have been used throughout and

only at the end have é\‘re}sults been éonverted to the origin.&l
units of the distributien. This system is adopted in order to avo'ld
mistakes which magotherwise ocour if arbitrary and original unibs

are mixed, N>

78 In the\’sﬁcaedmg chapters of this book the standard deviation
will be_ihe measure of dispersion that is invariably used. This
copes ‘about because it is much easier to handle mathematically
‘thani\éither of the other measures that have been suggested. The
mean deviation, with its necessary sorting out of negative and
Positive deviations, is somewhat unwieldy, whils? the inte'ar-
quartile distance does not possess the simple algebraac p%'opert}es
of the standard deviation. Nevertheless there are cases 1nt )?vhmh
the inter-quartile distance may be the appropriate quantity to
caleulate; for example, when the end groups do not have definite
boundaries. : . :

" I the variability in two sets of dats is to be compared it is

illlport&nt that the same measure is uged in the two cages. If this
. 72
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is not done there is a danger that apparent differences are due,
not to the variables being messured, but to the different measures
of dispersion being used. '

In making a comparison of, say, two standard deviations, it is
essential that they are measured in the same units as the original
observations. Thus the standard deviation of the height of sehool-
boys in & partioular case is 2-12 in. but this could equally well be
expressed as 0-1767 ft. Further it is impossible to compare with any
validity the standard deviations of two variables that have different
basic units, for example, height and weight. This must be so for,
whilst height could be measured in inches or centimetres, sayiweight
could be measured in pounds or Kilo-grams, and which units should
be used for the comparison ? Different answers could bé dhtained by
using different sets of units. O

If itpig»gl@ﬁir.ed.towdiscever‘-whether-one-diatribﬁtfon,is_ relatively
' mo?e?“va,;'ia,}:_glg_th&n another, it follows that it s necessary to find

ichieved by

sditie method of eliminating the basic untie: This'is
using the coefficient of varation, defined S

L R AR

e b B

\_/‘ Coefficient of T.ram_t-ia.tion=S-—{?aénjda”——f@E;-_‘mmmrl x 100%,. (7.5)
www.dbraulibrasy ,ol‘yﬁf"n
This coefficient does not depend on the units of measurement

sinee both the mean and standard deviation are linear funetions of
the units involved. If the unit of measurement is changed from
pounds to kilo-granig‘by multiplying every observation by the
factor 0-4536, both\the standard deviation and the mean will be
multiplied by thégame factor and hence the coefficient of variation
is unaltered. 5\ _
The co@bient of variation for the carbon content in g powder
in example 7.7 will be
R ol %x 100=9§(}§81§5x 100=3-579,
and this would be unaltered if all the original observations were
- multiplied by any factor, .

7.9 Measures of dispersion are as important characteristics of g
series of observations as were the measures of position. It is vital
that in any form of inquiry attention should be directed not solely
o the average value of the observations but also to the manner
in which those observations are distributed about the a,ferage.
So far in this book the methods available for the collection of data,
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ite reduction to tables and chartz and some basic descriptive .
meagures have been dealt with. Such treatment of a problem
would enable broad general conelusions to be drawn and decisions
. made whenever a very large volume of data was involved. The
next stage must be to examine the situation when the volume of
data is not large, and to see how such measures as the mean and
standard deviation would fluctuate if only a selection of the
- possible observations were available. By such a study it is possible
to see how representative of the whole field are the available
observations. This basie snd fundamental problem of statistics
will now be considered at some length. It is, however, essential £0)
understand fully the methods of presentation of data and the
caleulation of measures of central value and of dlspersmn. These
are basic processes which will constantly be needed in the ‘material

" that follows.
. EXERCISES

The previcus chapters contain a very large numb%r of distributions
for which the inter-quartile distance, the mea}t deviation and the
standard deviation can be calculated. The exertises suggested here do
not exhaust the material available for sueh ealoulations.

www,dbraulibrary or E.in

7.1 Calculate the mter—qua:ttlle dlsta.nce for the tables in exercises
(@) 4.17 Deaths of persons in raalw’a,y accidents.
(8) 4.9 Ages of males and f riales in 1947. Treat each sex separately
(¢) 6.7 Weights of men. ("}
(@) 6.9 Family size m\@ensmgbon in 1929.

7.2 Caleulate the mean-deviation for the tables in exercises

(@) 4.4 Deaiths fedorded per day in The Times.

() 4.11 Degrée'ef clondiness at Greenwich.

(c) 8.4 ights of pigs. _

(d) 3.5 Y‘e d of mangold roots. _ o

() 4.18\8pan of 60 men. {Use thie table formed in the exercise for
the C‘ﬁrlclﬁatmn) '

(F\8.8 Length of sorews.

7 3 Caloulate the standard deviation for the tables in exercises
{¢) 3.1 Telephone calls.

(8) 3.2 Words per sentence. (Use the raw data as given.)

(¢) 4.16 Tensile strengths of malleable iron castings.

(d) 6.6 Diastolic blood pressure.

(e) 4.14 Heart weight.

(f) 6.10 Age of railroad employees.

. 74 Caleulate the mean deviation and standard deviation for the
following gets of data a.nd caloulate also the Tatio standard deviation/
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mean deviation. Does this ratio vary very much from distribution to
distribution, or does it remain approximately constant?

(a} 4.15 Foresrm lengths, (Use the table formed In the exercise for
the caloulation,) - _ _

() 3.10 ‘Tensils strength and hardness, (Use table formed in the
exercise. ) - -

(¢} 3.7 Agoatonsetof tuberculosis, (Use table formed in the exercise.)

Caleulate the mean deviation and the standard deviation of the

75
following table which gives the lengths of 237 Specimens of the fruig of
the blood.root (Sunguinaria canadensis), -

N

Length " No. of ..~ Length " Nol b£>

{ram,) gpecimens (mm.) speéﬁnens
24-97 1 45-48- A 22
27-30 - 1 4851 NS
20-33 B I’ 51-54 '\<’ 5
33-36° 25 54-57. N\ 4
38-39 ' 39 5760 -2
- 3042 4 60-63) —
4245 54 63268 |
' AN Total 237

% 3

7.6 The following table gives the d’i:@;ti.'i{iution by age of 996 miners in -
South Afriea suffering from miner’s. phthisis, Calculate the mean, the

mean deviation and the standm;gaﬁaﬁionnof the miners’ ages. Noto
carefully the method R LT R Y2 been used.

- Age (yoars) No. of saihers Age (years) No. of miners
15-19 Xe ) : 4549 75
20-24 \\ ili] _ 50-54 : 47
25-29 \ 192 55-59 13

C80-34 N> a9 60-64 4
35-30 N 217 6569 3
40—45.\'“’ 140 70-74 1

& Total 996

7.7 Thé\ data below give the distance, m centimetres, that the top
of thethead is above the ear, for 235 schoolgirls aged 10 years. Calculate
thé Mean and standard deviation for the data,

N/ Heights Height -
{eentral values)  No. of girls (central values) No. of girls

10-5 1 ) 12-3 34
10:7 — - 128 33
16-9 4 127 21
11-1 3 12-9 17
11-3 8 18 7
i1-5 14 13-3 8
11-7 23 S 13:5 4
11-9 25 13-7 2
121 . 28 13-9 2

i Total 235
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7.8 1Ina corn-field 120 areas of squal size were selected and the mumber
of eggs of the European corn-borer in each area was counted up.
Calculate the inter-quartile distance, the mean deviation and the
standard deviation. (Data due to G. Beall.)

No.ofeggs 0 1 2 3 4 5 6 7 8 9 10 11 Tota
No.ofareas 47 23 27 9 7 3 1 1 — — 1 1 1%

7.9 Calculate from the foilowing data the mean and standard deviation
of the age of onset of the eye disease, optic atrophy, in Japanese males,

N

Age at onset - Age st onset 2 AN

(years) No. of males _ (years) No. of maleg -

41 1 T 28-31 , 8\

8-11 2 32-36° - GRS

12-15 20 : 36-39 O

18-19 20 40-43 3
20-23 11 4447 -
2427 3 48-51 ) .1

7y Total 74
A\ N ]

2 3

7.10  Caleulate the standard deviation of..tﬁa'number of noxious weed

seeds in ninety-eight quarter-ounce packets of Phleum prafense seeds. |
www.dbraulibrary.org.in

No. of noxious weed seeds (¢ 1 .,2:" 3 4 6 6 7 8 9 Total

' No. of packsta 3 L7\ 16 18 9 3 5 — 1 98

AN\
L 3

711 Caleulate the mear‘and standard deviation of the milk yield of
00Ws given in the tablé, The data refer to one year.

S ! .
Milk yield per com ) = - Milk yield per cow™
(83-“023 “3\ No, of sows {gallons) Na. of cows
200-208\" 2 . 760~ 799 ar
300-399 10 - 800- 899 22
400490 23 : 900- 999 8
P HO0-599 54  1000-1099 1
N_B00-699 61 ‘ Total 220

712 The monthly sales of an American department store over two
Years are given below in thousands of dollars,

834, 866, 892, 898, 950, 957, 1054, 1994, 1095, 1097, 1099, 1089,
1101, 1102, 1103, 1105, E107, 111_1, 1121, 1122, 1151, 1171, 1175, 1206.

Caloulate the mean and standard deviation of the'va,l.lies '(a) di'rectly
from the figures given, (b) by forming a grouped distribution with an
terval of 50 and using the grouped data.
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7.13 The table below gives the number of earners found per family in
-a sociad gurvey that was carried out in a large town. Caleulate the mean
and standard deviation.

No.of - No. of
earpets in No. of eaTners in No. of

family families family families
0 117 5 47
1 1086 i1 14
2 T 7 4
3 287 8 1
4 126 Total 2208 O

7.14 The table below gives the weights, in grams, at birth Qi' \310 twin
babies. of the same sex. Calculate the standard. demtlon ‘and the co-
sfficient of variation for this data (due to M. Fra.cca.r,gi.

Weight (gm.)  No. of babies Weight (grli’.}\\ No. of babies
5O0-& 2 26006 68
8005 10 gm:‘s 50
1100-5 4 ¢ 52005 20
14005 10 {85005 7
IG5 21 N 3800-5 2

. 20005 54 o\ Total 310
2300-5 62 N .

wWWW dbrauhbrary org.in

7.15 Calculate the mean dewjation and the standard deviation of the
inner diameter measuremérnts of the cylinders given below. What is the
ratio of the mean dewa(tﬁn to the standard deviation? Can you explain
why the ratio is not\&pprommately 0-8 as it usually is?

Dmmeter No. of Diameter No. of
(0-0001NZ: )  eylinders . {0-B001 in.) cylinders
) 96" 1 101 2
\:}9'1 2 102 1
N\ 92 — 103 3
=\ 93 1 104 2
NS 94 — 105 5
y 95 — 106 2
\ 4 96 — 107 1
97 2 108 -
98 2 109 -
- 99 2 110 - 2
100 2 Total 80

{Data adapted from J, R. Crawford.)
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8.1 An ordinary penny was tossed ten times and the result of the
tossings was seven heads, three tails, If nothing else were known
about the behaviour of tossed coins except this one experiment, -
its results would have to be used to estimate the frequency with
which a coin comes down heads when tossed. The pI‘OpOI'thIl »of
heads oceurring in the set of ten tossings was -7, or 0- -7, and this
would be the best estimate from the experimental regulty. When
the whole procedure was repeated and a further t-e'n\otéssings made
the result was five heads, five tails. From this sééond experiment
the estimated proportion of heads was &, or Q@,.Which is less than
before. In all twenty tossings, however, t ére were twelve heads
80 that a better estimate of the proportion of heads in repeated
tossings would be 12, or 0-6. When this-§imple experiment of ten
‘tossings was repeated a large iiiiBR UIPERESSTEHB numbers of |
heads in the first ten gets were‘pés’]gieetively:

75&6454566

The proportion of heaﬁs\at any stage is the total number of heads
observed divided by the total number of toasmgs then performed.
After ten tossmgs‘bhe proportion of heads is 15, or 0-7, whilst after -
twenty tossmgs it is (7 +5)/20, or 0-6, and the successive results
are: < A - o .

Total no. of tossings 10 20 30 40 50 60 70 80 90 100
Pmpq’ftlon of heads 0-70 0-60 0-57 0-58 054 0-63 0-51 0-51 0-52 0-53

The proportion of heads fluctuates a great deal while the number
of tossings is small, but as the experiment proceeds the fluctuations
get damped down and become small. If more tossings are made
the fluctuations get even smaller, so that the proportion of heads
observed would appear to tend to o limit. Thus the proportion of
heads after 100 tossings was 0-53, after 200 tossings it was 0-52, after
300 tossings it was 0-52, after 500 tossings it was 0-51, and after 1000
- Yossings it wag still 0-51 to two decimal places.
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For investigations of the proportionate frequency with which
an event oeccurs it is not essential that there are just two possible
cases, such ag head and tail, each of which appears about an equal

© number of times. An ordinary die has six faces and the number of
sixes obtained in ten tossings was noted. In this case the two
categories are ‘six’ and ‘not six’ and it is soon apparent that the
two alternatives do not appear in anything like equal proportions.
If it is & perfectly constructed die and the method of tossing does
not favour any one particular face, a long series of tossings wopld
show that the proportion of sixes, although subject to large
fluckuations ab first, settles down to about L. <\)

The essential feature to recognise in these experiments is that
in a short-term, or small-scale, experiment, the proportionate
frequency of some event may not be the same asg it would be in a
large-soale experiment. If $he proportionate ffequency is worked
out continuously as the number of experiments increases, the
flvctuations in the proportionate frequg.Q'c} bacome less and less
noticeable and eventually the proportion will remain stable from
one experiment to the next, i :

8.2 In order to berabldbroulidetiecifddortionate frequency of
events obfained from such ‘experiments the theory of probability
is needed. The word p b;a.bi]ity has been defined in several ways
but the simplest defiuition is to state that probability is ‘the
proportionate ﬁ-equ%ncy of occasions on which some stated event
oceurs’. For the-prediction of future evenis the proportionate
frequency re{iu\lred will be that of the limiting case, when the
number 9£;occasions or experiments carried out is large. Thus in
sectioxgéxl the probability of a tossed coin giving heads is the pro-
porjqibn of times that heads occur in repeated tossings of the coin,
LAfter a thousand tossings this proportion is 0-51 and in an infinite
\sét of tossinge of which the thousand form part, it seems likely
that the proportion would be exactly 0-5.
Most probleme in probability are concerned with the happening
not of one event only but of two or more events, and two basic
terms are now defined.

Mutually exclusive. Two events are said to be mutually exclusive
if they cannot occur together. For example, if the two events were
that a die when tossed showed six on its uppermost face and two
on its lowest face these events would be mutually exclusive, as
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the ordinary die has one on the face opposite six. On the other
hand if the two events were that the uppermost face showed a
number greater than three and that the lowest face had & one on
it, the events could oceur tbgether in one tossing and are not
mutually exclusive.

Independence. Two events are said to be independent if the -
happening of one event does not affect the happening of the other.
For example, suppose that the experiment consists of drawing one
card from a pack of playing cards and the first event is ‘thab the(\
card is a knave and the second that it is a heart. If a long serjes
of drawings were made and the occasions when a knave is,drawn
noted, it would be found that the four knaves in the patk had
ocetrred about the same number of times. This confimhs that the
four suits occur equally often amongst the knaves and; hence, one
knave in four is & heart. This proportion is exactly.the same as the
Proportion of hearts in single cards drawn fegm’ the whole pack.
Henoe the two events are said to be independérit. On the other hand,
suppose that the experiment consisted Of selecting a card at ran-
dom, the first event being that the egrd was not & court card and
the second event being that the poiits value of tile card was above
eight. These two events will nofibe independent, becanse 5 of the
hon-court cards are of the £alue nine or above, whjlst_ +5 of the

~ whole pack are nine ox"a})ove in value (ace high). Thus the
occurrence of the ﬁrst\&}’éht, card not a court card, would affect
the occurrence of the second event. Such a pair of events ca.r_mot
be said to be independent, and are therefore dependent events.

. o ‘\ Y :
8.3 Using'the above definitions, two theorems are now stated.

TheoregpT. If A and B are two mutually exclusive events then
the Prdbabi]ity of either 4 or B oceurring is equal to the sum of
the, Pi‘ababﬂity that 4 occurs and the probability that B oecurs.
Symbolically this is written as
Pr{d + By=Pr{4}+Pr(B),

where Pr {4} stands for the pmb&bﬂity of event 4 oecurring and

the symbol Pr{4 + B} stands for the probability of either 4 or B
OGGUrring_ .

Bxample 8.1 A card is drawn. at random from an Dl.‘li?jn&ry pack
of 52 playing cards. Tt is required to find the probability that the
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card drawn is either a spade or ibe ace of diamonds. Let 4 be the
event ‘spade’ and B be the event ‘ace of diamonds’. They are
- mutually exclusive events, as a single playing card cannot be both
a spade and the ace of diamonds. Thus Theorem I is applicable.
" If & long series of drawings of a single card is made, each card
in the pack will appear an approximately equal number of times.
(This would not necessarily be true for a short series of drawings
but would be true in the long run.} Thus the ace of diamonds would
appear on approximately &nd of the drawings and the probability
that it is draym is ;. Similarly, as there are thirteen spades m
~ the pack the proportion of spades appearing in a longseries of
" drawings is L3 or 1, and hence the probability of a spade is 1.

This gives :
| Pridi=l,  Pr(B)=d. D
Hence | Pr{A+B}=Pr{A}+Pr\{j3} -
{AY
e

Exomple 8.2 A man has ten coing itrhis pocket, two half-erowns,
three floring, one shilling and foure sixpences. He draws out a coin
at random from WV PAHE WL T the probability that it is
either a shilling or & siz;peﬁée? _ '

Let event 4 be thatithie coin is a shilling whilst event B iz that
the coin is a sixpefte:“These are again mutually exclusive events.
If repeated dragvings of a single coin from a man’s pocket were
made (the ¢dify being replaced after each drawing), each coin
would appear an equal number of times. It follows that the
probab@tjr of drawing a coin of any particular denomination is
the proportion of coins of that denomination. Hence the prob-
gbilities of the events 4 and B are -

\

Prid}=d, = Pr{Bl=4,
giving Pr{d+B=F5+ =%

It should be noted that this theorem only expresses symbolically

a very simple argument, namely that since five coins out of the

ten satisfy the required condition the expected probability is 5
Cor i ' '

Theorem Y1. I 4 and B are two independent events then the

probability that both A and B occur simnltaneously is equal to

L]
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the product of the probabilities that 4 and B occnr separately.
Written symbolically the theorem reads

Pr{AB}:Pr{A}xPr{B}, B

where Pr{4B] stands for the probability of both event 4 and
event B oceurring. :

Example 8.3 From a pack of playing cards two cards are drawn
at random the first eard being replaced before the second is drawn.
What is the probability that the first card drawn is a heart and {

- thesecond an ace? N

. One ig

A is the event that the card drawn is a heart. From prev;ous
examples the probability of a heart being drawn is taken ‘to, lie'the
proportion of hearts in the pack and therefore { :
Prid}=1=1
Similarly for event B there are four a,ces in the\\pack of fifty-two
vards and the proportion of aces is 4. Henoe
Pr{B}=15.,

. Binee the firgt card is replaced bé’fﬁf&%’éﬁéﬂm%‘:ﬂ&ﬁdmwu the
two drangs, and henee the two events are independent: of one
another, as the happening of ghe event does not affect the happen-
ing of the other. Theorem 1 \can then be e‘:!aI?*Phe*‘:I glvmg

Pr{>lB} -Pr(4) iPr{B}

&
< N
N\

‘.’\. L= |
Ezample 8.4, 'fi;o dice are thrown and i’ﬁ is kmown that for each
die all thefaces are equally likely to come uppermost. What is
the Pl"Oba-blhty that the total score thrown is two?

Forsthe total score to be equal to two both dice must show a
one 0 the uppermost face. Let 4 be the event that the first die
shows a one and B the event that the second die shows a one.

Then Pr{4}=Pr{B}=1, and, since the tossings of cach die are
Independent, the probability of the joint event that both show a

Pr{dB}= Pr{A}xPr{B} =75
84 The next two examples make use of ‘both theorems stated

: &bOVe Al]l readers are a,dv]ged t.O WOl'k through thﬁﬁe examples
'-'cal'efu]ly B T T
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Example 8.5 Bag I contains four white_énd four black balls
whilst bag 11 contains one white and seven black balls, A bag iz
chosen at random and a ball then chosen at random from the bag.
‘What is the probability that the hall chosen ig.white?

The experiment consists of two stages, first choosing a bag and
then choosing a ball. A white ball can arise in one of two mutually
exclusive ways:

1. Bag I is selected and a white baJl then drawn.

2. Bag II is selected and a white ball then drawn. ~
The first way consists of two events, namely bag 1 is chogerihand
then a white ball is drawn out. Let 4 be the event of thé Arawing
of bag I and B the event of drawing a white ball fronri’c. Then

Prid}=1 Pr {B}=4%.
Since the two evenis are mdependent the pro“ba,blhty of hoth
ocowrring I8 p.csp Pr{d}xPr{Bj=4ki=1.

A similar argument can now be u,se} for the second way of
- obtaining the white ball. If A" is the’event that bag Il is selected
and B’ the event that a white ball is drawn from it, then

Pr{d*®y< Pﬁ{ﬁ‘}““ﬁ&“{rﬁ Ieix3=
Since these two ways at@mutually exclusive the tota;l probability
of getting a white balhwill be

P}?ABHPI{A’B'} t+7e =75

Ezxample 8.6, \A coin is tossed n times. What is the probability
that no two-consecutive tossings give the same result, assuming
that a\each toaa the coin is equa,lly likely to come down heads or
tailg? :
'.\If' the conditions are to be satisfied then each toss must give
“\the opposite result from the previous foss. There are two cases to
be considered, namely HTTHTHT...n tossings, and THTHTH...n
tossings where H stands for a head and 7 for a tail.

Each of these cases has the same probability, since the tossihgs
are independent. The two cases are also mutually exclusive. The
probability of the firet case ig

Ixixtx..x} (nfactors),
and hence the overall probability is

2x (4= (3.
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85 The ideas in the preceding sections can now be extended
to cover the cases where the characteristic concerned ig measurable,
and not just of the presence or absence variety such as head or
not-head. In an inyestigation to find the average weight of school-
‘boysit would beimpossible to weigheverysingleschoolboy, and how-
ever large s number are weighed they will be only a selection from
those available. The complete set of schoolboys is called the popula-
tion and the smaller set selected for weighing is called the sample.
To use the concept of probability for such measurable charac-
teristics care must be taken to distinguish between the sample and
the population. The depth of sapwood on telegraph poles ks
measured on five poles, and only one pole had a depth grie?ater
 than 3-4 in., that is a proportion of 0-2. Further poles weké then
examined and after twenty poles had been measured, fhree poles,
or 0-15 of those measured, had a depth greater than@id in. By the
time 100 poles had been measured the propor@o;n with depth of
sapwood greater than 34 in. was 0-14, and.hen 500 poles had
been measured the proportion was 0-18,\The fluctuations in the
Proportion became smaller as more poles.ivere measured and the
Proportion tends to that of the fregedhiy hreeyeorsdsponding to
- & depth of sapwood beyond 3-4 mFlgs 8.1 and 8.2 illustrate how
the increase in sample size will bring the frequency distribution
nearer to the hypothetical frequency curve discussed in chapter 5,
and hence will engure tthe proportion above 3-4 in. becomes
~Tore stable, The limiting frequency curve is what a statistician -
has tu mind when, }{g talks of the ‘population” of telegraph poles.
The probability, of.4 pole having a depth of sapwood greater than
3-4in. will &\he ratio of the area beneath the curve beyond
34in. to thiat beneath the whole curve. : .
. The dgﬁiiition of proportionate frequency holds good even when
_intszresf{; 18 not just centred on individuals beyond a certain value.
Fig.'83 shows the frequency curve corresponding to the length of
antennae of the aphis (green-fly). The probability that the length
of antenna of one green-fly drawn at random being bet?reen 1-6
and 1-8 mm, will be the proportionate frequency with which these
Iengths oceur and is the ratio of the shaded ares to the total area
~ beneath the frequency curve. '

- 8.6 The greater the number of ‘obgervations, the grea,ter. is the
&vailable information concerning the population from which the
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Fig. 8.3. Antennae of the aphis N

observations come. The next question to be considéred is how far
itis valid to draw inferences about characterist;'c{of the population
or universe of individuals from the smallet et of individuals
available in the sample. Suppose that the investigation into
weights of schoolboys the sample was, gelocted by taking all the
tall boys. There would then be”ﬁi‘ﬁﬁfe‘iﬁ%ﬁ&ﬁw‘ﬁ&'ﬂmg that the
results of the weighing would bé “imrepresentative, as tall boys
will tend to weigh more than. short boys. Thus the sample must
" be chogen in a manner that\ls random and unbiased in the sense
that every schoolboy i fukt as likely to appear in the sample as
any other schoolboye® The sa,mple would then accurately reflect
the population. %

To ensure thwhfi, truly random sample is taken some method
such as drawing by lots or taking every tenth boy on an aipha-‘
betical ]Jstnhust be used. Having chosen the sample the next step
isto mves,tlga,t,e what conclusions may be drawn. validly concerning
thepoplation from which it comes. To llustrate this the following
simple experiment was performed, and it can eagily be repeated
by the reader. :

8.7 'Ten identical dizcs were marked with the numbers 1, 2, 3, ...,
10 and placed in a large bowl. The discs were thoroughly shuffled
and one disc drawn out. Its number was noted and the disc
replaced in the bowl. The whole process was repeated until a
‘thousand drawings had been made. The results of the first hundred
dl‘&ngs are given in table 8.1 where the order of drawing goes

8 . '8
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down the suceessive columns.’ Using this as the raw material 5
number of calculations were made. In the first place the mean
and standard deviation of the 1000 drawings were caleulated and
found to be 5-54 and 2-83 respectively, Next, imagine that the
experiment consisted of drawing out five dises from the bowl,
replacing them between each drawing. The values in table 8.1
taken in groups of five would reprosent the observed results of
such an experiment. Thus the thousand original drawings would
now provide 200 series of five drawings for the modified experirmgént,
For each group of five the mean value of the numbers drawn is
caleulated. For example, the mean of the first set of ﬁs(é"is‘

N

3(8+3+6+48+9) =638,

7%

This is done for all the remaining sets of five and the first twenty
such means, corresponding to the numbers ih $able 8.1, are given
in table 8.2 reading across the rows, A gimilar procedure is now
carried out for experiments thag consigt'\'o? drawings of groups of
10, 15, 20 and 25 dises and in each ¢age the mean of the groups
calculated. These means are now ’fgi'nied mto frequency distribu-
tions and plotted as dot diagransin, fig. 8.4 where, to avoid over-
erowding, not all Ky Hockgrglﬂé]%li'%%? e

Table{é.l. Drawing of discs

3
8 3. 1 {19+ 10 3 8 7 3 5
3 6 54, N 7 2 3 2 3 8
6 3 8(> 3 ¢ 10 9 6 3 3
8 5 & 9 2" 4 7 7 8 8
9 1 ()4 9 2 8 7 2 3 10
8 1076 10 7 5 2 8 5 8
9 \2 2 10 9 6 9 3 10 5
AN 3 4 T3 8 7 3 5
1.3M0 ¢ 2 1 2 ¢ 7 6 10
AN 2 5 7 6 5 7 10 1 7
N N

A
W

Table 8.2, Means of five drawings

6-8 6-2 3-6 52 40 40 76 66 - 5.0 6-0
54 4-2 6-8 G-0 48 88 40 50 70 70

The most noticeable featurs in the figure is that whatever the
number of drawings in the experiment. the average value of the
sample mean is the same. Thig llustrates the fact that the means
of samples are grouped round the mean of the Population. A second

 important feature is that the larger the size of the sample the
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smaller is the average discrepanoy between the sample mean and the
population mean, Hence in estimating the population mean, the
larger the sample the more acourate will be the estimate.

- -
- L] »
- - - . » -
. L L] - - L] L] -
- - - - - - [ ] - -
- - L] - L L ] [ ] » » »
[ ] - - - [ ] - L ] L] L] >
REREEEEEE .
1 23 4 56 7 8 9 10 drawings
: O
ALY £\
I ..I o:: :.'I.u:. ...I.'. e n Means ofd:awiﬁgs
1 3 5 7 9 of 5 dm'cs‘
R
D
. (v
: 11 : {\Y  Means of drawings
www . dbtstilibrary.org.in
-
: - .'..‘.'.r.: 3'!:-":?: * - Means of drawings
: Means of drawings
2 9 of 25 discs
N\ C, .
&\ d Fig. 8.4. Drawing of disea

\-‘;

The various distributions just obtained experimentally are
termed the ‘sampling distributions of the mean’, and various
caleulations were made from the observed results. First the mean
and standard deviation of each of the sampling distributions of the
mean were caleulated. The regults are given in table 8.3 and it will
be noticed that the mean of the sample means is always the same,
as the same 1000 drawings were used for the experiments. Had
the samples been obtained completely afresh for each differsnt

8-z
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sample size there would have been some small variation in these
means. The third column shows, by calculating the standard
deviation of each distribution, how the seatter of the means about
their average value decreases as the size of the sample increases.
It is clear that the reduction in standard deviation is not simply
inversely proportional to the size of the sample but decreases more
slowly than that. For example, when the sample size is doubled,
from five to ten, the standard deviation is not halved but is reduced
in the ratio of 0-92:1:31 or 1:1-42. The value 1:42 is approximately
/2 and the general rule for random sempling states that if "¢ is the
standard deviation of individuals in g population, then-&L./7is the
standard deviation of the mean of random samples of 3ize 7 from
that population. o\ )

Table 8.3. Means and standard deviatiom’of sample means

{1) (2 EON _ 4
Stan}ifird deviation of the means
No. of AN .
individuals Mean —  \J Calculated

in the sample of the RN from
(n) sample Toeansy.y Ohgerv af.fn
1 S 5-1?4'39.1 ihlrary_org, é 118 3 2.87

5 5-54 1-31 1-28

10 5464 0-92 0-91
15 654 0-71 0-74
20 (L 054 0-81 0-64
25 \ 5-54 0-58 . 0-57

The standard \déviation of the ten observations 1, 2, 3,...,10 is
2-87 and, a@,éa,ch of the ten numbers would appear equally often
in a long sequence of drawings this value is taken for s in the
population. Column (4) in table 8.3 gives the values of s{,/n for
Yhe\various sizes of samples considered. Comparison of the ob-
Sserved stendard deviations with those caleulated from s/,fn show
very close agreement. This empirical property of the variability
displayed by the means of random samples of size » from any
population s important and forms the basis of much statistical
work, since it demonstrates that the larger the sample the more
accurate is the sample mean when used for estimating the mean
in the whole population.
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EXERCISES

8.1 Two ordinary six-sided dice are tossed. What are the probabilities
(@) That one die only shows a six?
(b) That hoth dice show the game number? _
(¢} That the sum of the two numbers shown is ten?

8.2 Two players A and B shake a die in turn, 4 going first. The first:
player to throw a six starts some game. What are 4 and B's respecmve
chances of starting the game?

8.3 Omno of the digits 1, 2, 3, ..., 7 is chosen ab random. What is thé S
chance that the digit will be (a.) odd, (3) even? Whait do these; bwo
probabilities add up to, and why? _ N\

8.4 TIn the Morse alphabet letters are formed by combmat;uhs of dots
and dashes. Suppose that all letters had either one, two or t]:u*ee symbols
How many different letters could be formed? ~N\

85 A bag contains four red balls and three Whlte balls, A ball is
drawn out and its colour noted and is not replsbed Another ball is
.drawn out, colour noted and not replaced, and“so on. Caleulate the
probabﬂxty that the order of drawmg of tﬁe ‘halls is red white, red,
. white, red, white, red.

‘8.6 If there are three seals andvibuldbmvknirbmf peadingh wax, in hOW
many ways can a letter be sealed* ’

8.7 There are three identicglpairs of gloves in the h&ﬂ A v131t01' on
leaving picks up two glove,&a,t andom. What s the probability that the
two gloves form a pau- if all the selections of gloves are equally likely?

88 Two dice are thrown simultaneously. What is the cha.nce that
neither gives a one \OF a six?

- 8.9 A cardds d.ra.wn at random from an ord.lnary pack of playing
cards. What are the probabilities of obtaining
(3} Ashenrt? :
{8)('EHe king of hearte?
4c)) The king or queen of hearts?
{@) The king or ¢ueen of any suit?

810 Three pennies are tossed. What are the probabilities that

(@) Al three pennies are tails?
() At least two of the pennies are tails?

8.11 A commities is to be formed of thres boys out of six boys eligible
toserve on it. In how many different ways can the committee be formed.

8.12 Three men and three women are available for mixed doubles at
tennis. How many different games can be made up from the pla,yers
availablat?
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8.13 Thers are two urns 4 and B, Urn A containg three white balls

(6} If the balls are replaced after each drawing,

8.15 A siz-sided die is 50 biased that it is twice ag likely to show an
- even mumber as an odd number when thrown., T4 i thrp\vvh twice,

being 1000 Ib. Per 8q. in. If samples of size fiveare taken from this
Population and the mean tensl strength, a ef the five castings ob-
tained, what will be the mean value and{sbandard deviation of the
quantity z in repeated sampling? \\/

8.17 The percentage agh content in'g darge number of scoops of coal
was found to have a mean of 17-92°4nd a standard deviation of 2-03,
Suppose that mnd%t&{mp‘l@ﬁ@?a@-ym@mwem drawn and the mean
ash content in the s, seoops found. How large would 7 have to be for

~ the standard deviation of {Ee mean of % 6eoops to be less than 0-52

8.18 The length of %fdl‘ea.rm of & very large number of adult males
Was measured a,nd~ between 17.1 . and 20-9 in, with a pre-
Ponderance of val@es about half-way between the two extremes, If

and the mean-fength of forearm obtained for the sample, between what
values, a.%rqxima,tely, would you expect the means to fie?
&

/PN
\
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9

THE BINOMIAL THEOREM

9.1 This chapter will indicate how a knowledge of the theory of
probability as outlined in the previous chapter can be used to
make deductions as to the shape of the frequency distributions-
produced when certain types of experiment are repeated. The(
classes of experiments considered have two main charactenstws
in common

(1) Each experiment is independent of the result of th‘e pre-
ceding experiments. Thus the fact that a coin, when ‘bosSed cores
down heads does not affect the chance of the coln commg down
- heads at the suceeeding tossing.

{ii) The quantity studied ig the presencegr.abgence of some
characteristic; that is, there are only twq classes to be considered
and every event falls into one or other of'these. These may be, for
example, the heads or tails for u cgRizekaitey ory@iiment, under
6 ft. or over 6 fi. in height-for men- drawn from some population,
or the presence or absence of sbme defect in articles made by a
machine, -

In the previous chapt-es 11; was found that if repeated in-
dependent drawings. afe made from the population under con-
sideration, the propori;ion of individusls in the drawings possessing
the characteristig\doncerned will approach the proportion in the
whole populatmh possessing it. But in all sets of drawings there -
will be somg\yariations from the exact proportion, these variations
dependiniron the size of the sets of drawings and the frequency
with which the particular characteristic occurs.

9.2 To illustrate haw these variations oceur & simple experiment
was performed. A penny was selected and tossed 2000 times, the
number of heads and tails obtained being recorded. Next two
pennies were selected and both tossed. The number of heads
obtained, zero, one or two, was noted, and the experiment repeated
2000 times. The whole procedure was now repeated, using groups
of three or four or five penmies, and each time the number of heads
was recorded. The results are given in table 9.1,
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Several things stand out from this table. First of all the number ‘5-1
of times that no heads appear depends very much on =, the .
number of coins in the group heing tossed. For each value of #
there were 2000 experiments and the number of experiments which |
gave rise to no heads were

1021, 504, 257, 133 and 71 respectively.

Table 9.1, Coin-fossing experiment resulls

No. of heads )
) Oy O {=) \

.0 1 -2 3 4 5  Toal

1w o9 — — —  — .52000

No.ofeoips |2 504 983 513 — — — \J 2000

ingrowp {3 267 131 70 252 — ma 2000

{n) 4 133 BIR 728 488 133 /)07 2000
- 5.

71 341 609 608 413 “ 59 2000

It will be noticed that each of the frequendies is about half the
preceding frequency. Secondly, the mosthgommon number of heads
to oceur is the central number of those that can possibly ocour.
Thus if four coins are tossed thereyaze five possibilities, zero to four
heads, and the contrdPuHPANWCHA be two heads. From the
table this is seen to be e&sﬂy.the ost common result. If # is odd
there is an even numberof possibilities, and the middle two are
the most common regults. Thus if n=3, one or two heads are the
most common resulfs. Finally the approximate symmetry of the
table should be noted. For n=3 the number of ocoasions on which
zero or thres iheads were ohserved are approximately equal and
the numbel\of occasions on which one or two heads were observed
are Mappmnmabely equal..
Clﬁa}ly in any particular experiment a table such as table 9.1
gotld be constructed by a series of experiments under similar
{“gonditions. This would be an extremely unwieldy procedure and
not of very general use. Table 9.1 has shown that some form of
pattern or law emerges, and the next step is to find a general
method of deducing the frequencies in the table. This will involve

a knowledge of the probability of each mdlﬂd‘ﬂ&l unit possesmng
the chamctenstlc concerned.

9..3 Buppose that a coin hasa pmba.bility p of coming down heads
with a single tossing. By this it is meant that in a long series of
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independent tossings the proportlona.te frequency mth which the
coin will come down heads is p. The value of must of course,
fall between zero and unity. Let ¢=1- p represent the probability
of & tail. Then if the coin be tossed twice there are four possible
outcontes:

(i) first tossing head, second tossing head

(ii) first fossing head, second tossing tail;

(iii) first tossing tail, second tossing head;

(iv) first tossing tail, second tossing tail. - ~\

Written symbolically these four alternatives are SO\

HH, HT, TH,TT, O
where H represents a head and 7T a tail. The two thrdws are in-
dependent, so using Theorem IT of ohapter 8 the pmb&bﬂltles of

the four alternatives are
PXP, PRY 4XP, QX?\

The first outcome gives two heads with a" pmba.bﬂlty of p2. The
two middle alternatives each l;pg}d,tdm.m (gaéc],none tail and
the probability of getting exacttly one head is, therefors, by
Theorem I of chapter 8, the sum'of these two probabilities, ag they
are mutually exclusive events Hence the probability is 2pg. The

\"

last alternative gives tw0) with a probability ¢ Thus the
Probabilities of gettmg\ﬂ 1 or 0 heads in tossing the coin twice are
@7 rwe e

respectivel No‘oe that these statements of probability do not
specify the%torder in which the results ocourred but merely the
Pl“obabllltaes of the overall result. The three probabilities add up
to ore) If the coin is tossed three times there are now eight

posgible alternative results, namely .
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT,
and the corresPondjng_probabi}itieé for the eight alternatives are

PP, PPY, PP, PIY- 10D 90D 94D, 494

The first alternative gives three heads, the second, third and fifth
give two heads and the fourth, sixth, and seventh give one head,
whilst the: e1ghth gwes no heads atall:- Since the eight alternatives
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are mutually exclusive the probabilities of the four combined
results are:

Three heads ' 7%,
Two heads ppg +pgp +qpp =397,

One head  pgg +qpg +qgp = 3pg®,
No heads . .

9.4 The method outlined in section 9.3 is quite general and conld
be extended to any number of tossings of the coin, but the calctla-
tion would be long and tedious, and some more general me‘thod i8
obviously required. For example, with one tossing theré were two
alternatives, two tossings gave four alternativeg,¥ three tossings
eight alternatives and so on, With twenty tossings & will be found
that there are 1,048,576 alternatives which Waidd require a great
desl of enumeration | To overcome this use jgmade of a fandamental
algebraic theorem. Notice first that whén two tossings were made
the probabilities of getting 0, 1, 2 heads were

e 21, 7",
which are the thres tEAR Y Eaé p{;‘gss%n (¢ + p)® when expanded

algebralcally Similarly shen there were three tossings the prob-
abilities of getting 0, 4,2, 3 heads were

&
\ 4, 3¢, 3q0%, P,
which are thel$nccessive terms in the expansion of (g-+p)®. This

suggests that'if » tossings are carried out the probabilities of

gotting ©) 1, 2, ..., » heads in these tossings are gwen by the
succeaﬁ}ve forms of the expansion of

A 3 {g+p)

\

A geries of expressions giving the probabilities of the various
outoomes of the experiment is termed the probability distribution
of the results. Thus the terms of (g4 p)® form the probability dis-
tribution of the number of heads in three independent tossings of
8 coin,

The expansxon {g+p)* is known as the bmomml theoremn which
states that

(g+p)=g"+C g% 1p +"Cyg™ 2 +
FOg P+ L O g 27,
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n!
"Ce= klin—k)l"

The expression n! is called factorial » and is the symbol to denote
the product n{n—1) (n—2)...3.2.1.

Similarly El=kik—1)(k—2)...3.2.1
and (n—k) ! =(n—k) (n—k—1) (n—Fk—2)... 3.2.L.

where

Thus the factorial of any whole number is the product of that )
number and all the whole numbers less than itself down to one. The
complete expression *C, is an exa,mple of what is called a binongial
coefficient and is spoken of as ‘n.c.%k’. Asan illustration, cofigider
the cage of three tossings. The probabilities of 0, 1, 2 acn,d. 8 ‘feads

will be equal to the successive terms of D

(g+ 2P =¢°+3C,4%p +3C,90% + p%HV
31 3.2.1 _ o
2111 2.1.1 ;{\"

31 3.2
1! 2‘!\/W‘lr.sﬂaﬂaulﬁ31ary org.in

giving as the probabilities ¢%, 3q?p, 3qp , p%, which agree with the
results obtained earlier. It isigssential to be able o write_a down the
required terms of a bmonuﬁ series at sight. Perhaps the easiest
Wway is to remember thé\@eneral term in the form:

In a series of n independent trials at each of which the probability
of some event ocghrring is constant and equal to p the probability
of the event o.g'}mng exactly % times is equal to the expression
U plgnt %here g=1—gp. In using this notation it is to be under-
stood that »(), and ", are each equal to one.

and 30, =

30‘2

The calculation of the individual terma is not unduly laborious,
a‘ltho‘lgh logarithms will sometimes be found useful. Frequently
if & series of terms is required it is easiest to proceed in & definite
order, with each term building up from the previous one. Thus if

'Pk =“03Pkwk’
then the next term is E-1
Bey1="Cra @7 |

P+ n | phign—*-1f! (n— ~k)!
P T+ )T (n=k—1)! pPgnl’

and the ratio
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which on simplifieation, equals

n—kp
k+1¢q'
Therefore, Py, =;—:£%-§ B, an example of & recurrence formula,

If F, is caleulated then the values By, B, ..., can be found in
fuceession,

Ezample 9.1 A die is thrown four times. Bach side of the die has
the same probability of I of appearing uppermost. If % js the
number of sixes that appear in the four throws it is requived to

find the probability distribution of k. O
Table 9.2. Four throws of a die, \\ ’
k 7, @
no. of sixos  algebraie " thimerical
0 (§) /> 0-4823
1 M) @F . LV 03858
2 83 (1 O 0-1157
3 W m O 0-0154
4 CYLIRNN 0-0008

The probability f' g\,’”{eg#ﬁ? %%E;%fg gé‘:(%)" (8)* %, where [ takes
the values 0, 1, 2, 3 and 4, Arranging the work in tabular form
gives the values in table 9.2, The sum of the Pprobapbilities is equal
to one as it should¢le "thus demonstrating that one of the five
mutually exclusivéresults given must in fact oceur. The results in
the table were éomputed directly but they could equally well be .
caleulated by the recurrence formula, Thus if

OB~ p-4823,

Q 4-0 1/6 |
N 1_0+1x—57f—;x04823-0 3858, etc,

V :
Example 9.2 An experiment is carried out involving the crossing
of a fern with a palm. These two varieties of plant can be eagily
distinguished and the seeds obtained from such g crossing may be
Planted and the type of plant that comes up noted. According to
& theory of cross-fertilisation of planty put forward by Mendel, the
chance that the seed resulting from such a crossing should give a

Planted, and the number of palms 0, 1, 2, ..., 5 obtained noted.



THE BINOMIAL THEOREM 125

Table 9.3. Observed number of palms obtained

Na. of palms (k) 0 1 2 2 4 5  Total

No. of times & palms 1 1 5 179 24 12 60
were obtained )

The whole experiment was repeated sixty times, with the results
given in table 9.3. If Mendel’s theory is correct then the proportion
of occasions on which 0, 1, 2, 3, 4 or 5 palms were obtained would
be the successive terms of G425, '

-gince there were five seeds planted and the probability, p, thni:}
any one seed would give a palm is 3/4. The terms of this expafision
are equal to ' K. “~\

0-0010, 0-0146, 0-0879, 0-2637, 0-3955, 0-23730)

and are shown diagrammatically in fig. 9.1 as a quuelfcy diagram.
In this experiment sixty crossings were exaa:r;irp&l’. Probability is

04
wwvi,qg}‘éulibl'ary.ot'g.in )
03 | \
E
2 ool o
: o
o1 Oy
I
:"\.Qt
KNS P—
AN o 1 2 3 4 5 &
\”‘{ v/ Fig, 9.1. Terms of (}+1)°

defined as the proportionate frequency With'which some event
oceurs. Let this probability be P. Then the expected number of
occurrences of the event in 60 crossings will be 60F since the
Proportionate frequency of the event concerned is then 60P/60
or P. Hence the expected frequencies of the six pQSsible outoomes

are L |
60 x 0-0010, 60 x 0-0146, ..., 60x 0-2373,
o 0-1, 09, 53, 168, 237, 142, .

Q!
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which differ little from the observed frequencies shown in table
9.3. In fact the differences seem to be no more than could occur
by purely chance fluctuations, and the Mendelian theory would
therefore appearto be reasonable on the basis of the observed results
of this experiment. :

Example 9.3 Consider families containing five children in which
there are no twins. Assuming that the probabilities of a child
being a hoy or a girl are each equal to }, what fraction of such
families could be expected O
(i) to have at leagt one son and one daughter? Ke
{ii} to have all children of the same sex? N\
If the probability of & child being male is equal to %} #nd the sex
of each child is independent of the other childrery, then in families
of size five the proportions that have 0, 1,.2;\.., 5 boys will be

N\
\

- given by the successive terms of the series)

N

A
G+ir. (D
On expanding the expression the sugeessive terms are

i 16\ 5t
32 'ﬁ’ 322982y 33> B2-

m
Now if the family*i§ to 5%%[15 Jedst 006 child of each sex amonggb
the'five children it must-have between exactly one and exactly
four hoys. Hence the'\'required proportion will be

Pr{l hoxl\{-l"r {2 boys} + Pr{3 boys} + Pr{4 boys}
“és'*‘%%"‘ $5+3z

N -

O & :
Secondly, if the family is to have all children of one sex it must
copfain either no boys or else five boys, that is it must be one of
88 two cases not included in the previous category. Hence the
wvequired proportion is

Pr{0 boys}+ Pr{s boys} = + &=L,

and it will be noticed that 15+ =1, which is clearly necessary,

since the two categories are mutually exclusive and are the only
possible categories.

9.6 The problem may be in a.different form. For example,
experience may bave shown in the past that a,certain event ocours
with a specified probability. A sample of items is now examined
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in order to discover whether it is reasonable to assume that the
event, still oecurs with the specified probability or whether the
probability has changed.

Example 9.4 Suppose that over a long period of time a manu-
facturer has been making sparking plugs of which 109, were
defective. In an attempt to reduce this percentage, the manu-
facturer makes a change in his methods. To examine the change a
sample of ten plugs is seleoted at random and tested. None of ,
the plugs are defective. Is it reasonable to agsume that the pro-
portion of defective plugs is still 10 %? A

If the population possesses a proportionate frequency of 01 of
defective plugs and & random sample of ten plugs is drawn then
the probabilities of 0, 1, 2, ..., 10 defective plugs in the s&m_ple will
be the successive terms of t;he binomial series \;

(0‘9 + O 1)10’ .\~\\ )
and the probability of no defective plugs dceurring is (0-9)1%, that is
the first term, which is equal to 0-349: Thus if the proportion of
defective plugsis 0-1 and the expamﬂhnﬁlﬂfldmymg;and examining
ten plugs is carried out a large number of times, then in about
one-third of the experiments/it would be found that there were
no defective plugs amonggb.the ten examined. This result, there-
fore, is quite a common*({he and would not at all suggest that the
figure of 109, of defactive plugs had in any way changed.

On the other hand, suppose that in the original sample of ten
plugs all ten had\been found to be defective. The probability of
such a result\ansmg by chance from a population in which 10%,
are defec,t‘ve is the last term in the binomial expansion given
above, siamely (0-1)1 or 0-000,000,000,1. This is very small and
such &1 event should only happen about once in ten thousand
million times. If the proportion of defectives in the population of
plugs were higher than 0-1 the prob&bﬂlty of getting all ten in the
sample defective would in turn be much higher, and hence the
observed result would throw grave doubts on the belief that the
proportion of defectives is 0-1.

Ezample 9.5 In a certain factory observations over a long period
‘have shown that 209, of the workmen succumb to an occupational
disease within a year of commencing work. To try to improve
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conditions considerable alterations are made to a particular part
of the factory, and of the fifty workmen in this portion only six
succumb to the disease during the year following the alterations.
Can it reasonably be said that a significant improvement has been
effected ?

To answer this question consider first the situation if the altera-
tions had effected no improvement. Under these conditions the
Probabilities of 0, 1, 2, ..., 50 workmen gotting the djse&se@ a
sample of fifty from a population in which each man hag a chance
of 0-2 of getting the disease are the successive terms of the'biromial

expansion (0-8-0-2)50, _ AN

Thus Pr{0}=(0-8) and is zero to four decifal places where
Pr{0} stands for the probability that none “of the men get the
disease. Similarly Pr{1}=0-0002, Pr{2}~—-\0:0011, Pr{3}=0-0044,
- Pria}=00128, Pr {5}~ 0-0295, Pr{6}=0'0554.

Hence the probability that exactly si}men get the disease in the
sample of fifty is equal to 0-0554., T’might be decided to use this
result to conclude that, ag thig pidbability is reasonably small, the
true probability of a an ety iseage is smaller than 0-2,
because if it wepe ng%;;ﬁ%ﬁﬁﬁ%ﬁ sample result of six men
with the disease beconsés s more likely happening. However, it
must be borne in mifd that if such a decision were to be made
when just six of the mien in the sample get the disease, an identical
decision would, be’made, only much more strongly so, if five or
four or less offie men get the disease gince

7,

therefore :
Pr{o}"‘Pr{l}+P1'{2}+PI‘{3}+PI‘{4}+Pr{5}+Pr{6}=0—1034.

Thus in about 10 % of cases such a result could oceur by chance,
and thig ig pi‘obably a sufficiently common occurrence for there to
be doubt as to whether » significant improvement hag in fact been
effected. On the ofher hand, suppose that only three of the fifty
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men got the disease. The probability of three or less of the men
getting the disease if there has been no improvement is

Pr {0} +Pr {1} + Pr {2} + Pr {8} = 0-0057,

and such a result would only occur about onree in 180 times by
chanee. This would throw considerable doubt om the theory that
209, of the men get the disease, and would suggest that in fact
the true proportion was now somewhat lower, so that some im-
provement had been made, .
Tt should be noted that the smallness of the individual grob-
abilities does not by itself prove or disprove the statemenito be
examined. It is essential to include the probabilities of all results
which would lead to the same decision. Secondly, it s necessary
. for the sample result to be more likely on the altezhative theory
if the original theory is to be rejected. For example, if out of the
fiféy men considered above twenty got the dlse%e it will be found

that  Pr {20} = 00008, ‘\

if the probability that each man gg?s"iaﬁe disease is 0-2. The ex-
pected number of men gettmg\mgmgﬁ HSRp 9rl¢ so that more
extreme values than 20 wouldbe 21, 22 and so on. Adding up
these probabilities gives L

Pr {20} + P\n‘\?{é‘l} +Pr {22} +... =0-0009,

and shows that such.hn extreme result would only oceur about
once in a 1000 tinges or even less. But to reject the proposition
that each m.a.nghé,s a probability of 0-2 of getting the disease in
favour of &-alternative that the new conditions have made an
xmprovement wonld be fooligh. This follows becanse if the prob-
a:blllty\of getting the disease were in fact lower than 0-2 the
probability of getting twenty men with the disease would be even
smaller and it would be a still more unlikely event than before.

9.7 The various examples given demonstrate the need for the
calculation of binomial terms, and the last example shows thab
in many cages it is the sum of a number of end terms thatis required.
To obtain these values by the separate caleulation of each term
and then summing can be very tedious, especially if » is large.
Fortunately, however, in guch cireumstances it is possible to find
an easier way of calculating the required probabilities. This is

9 MP
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because, as n gets large, the shape of the binomial distributions
becomes very similar whatever the particular values of » and P
concerned. Fig. 9.2 shows four binomial distributions {a) (} + 3o,
() (0-7+0:3)%, (c) (0-7+0-3)®, and (d) (0-7+0-3)®, each plotted
in the form of a line diagram. Case (a) is symmetrical and beil-
shaped becanse P=q=13, and it is easy to see that as n increases
and the number of ordinates similarly increases the outline will
gradually approximate to & smooth symmetrical frequency curve,
In case (b}, however, the distribution is far from symmetrical and

03
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(a) G+H"

03 .
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02 www.dbraulibrée LOrg.in
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® (u-wo?)?\\ @ (07+03)"

¢)-Fig. 9.2. Binomial distributions

(Vertical s?eylé gives Probability, horizontal seale nomber of successes.)

7\ \
is very l‘qslﬂie (@) in general characteristios, However, if # iz in-
creased from ten to twenty, with p kept constant as it is when
ggig;g' from (b).to (¢}, then the distribution- becomes more Sym-
‘netrical, and & further increase of n up to 30, ag in (d}, makes the
distribution very similar to the symmetrical and bell-shaped form
in (a). This form of Symmetrical and bell-shaped distribution is
always reached provided # is sufficiently large. The value of #

form shown in fig. 9.3. This form is called the normal distribution,
or the Gaussian curve, after the mathematician Gauss (1 T77-1855).
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It has a constant shape but the exact location and scale of the
distribution depends on two constants, namely, the mean and the
standard deviation. In table 9-4 a normal distribution that has a
mean equal to zero and a standard deviation of unity is tabulated,
Such a distribution is referred to ag a unit normal distribution. The
area for any given 2, shown shaded in fig. 9.4, goes from zero to
unity as x increases from minus to plus infinity. The distribution

Fig. 9.3. Lirsiting normal chstrzbutum{

is also symmetrmal Thus the area to the\left of the abscissa

~—1-4 is 0-0808 whilst the area‘pgfmg.;gbﬁﬂfd@]o%]ﬁ]l —0-9192 or
0-0808. The area on either side of jsﬁe ordinate at =0 is clearly

equal to 3. N
Table 9.4.  Normal curve areas
Abszcizsa Area %bsﬁlﬂsa. _Area, Abscissa Arog
{x) Fiz) \\ “z) Fiz) {) Flx)
—32 00007 -1-1 0-1357 1-0 0-8413
—~381 00010 75N —10 0-1587 1-1 0-8643
—~30 0001\ —0:9 0-1841 .12 0-8849
—29 ooy < —08 02118 1-3 0-9032
— 28 00076 —07 0-2420 14 06162
—27 \o 0035 —06 0-2743 15 0-9332
—2.8 .\ o 0047 —05 0-3085 1-6 0-9452
~2550" 00062 —04 0-3446 17 0-9554
ﬂﬁ& 0-0082 —03 - 03821 1-8 0-9641
Nois 0-0107 ' —02 0-4207 1-9 0-9713
-2 0-0139 oI 0-4602 20 09772
—2.1 60179 0 €-5000 21 09821
—20 0-0228 (V3 | 0-5308 2.9 0-9861
—1-9 0-0287 . 02 5793 . 23 0-9893
—1.8 0-0359 0-3 0-6179 2-4 - 09918
- 17 00446 o4 0-8554 2-5 (-9938
—1-6 0-0548 05 - 0-6915 2-6 0-0953
=15 00668 o6 0-72567 - 2.7 09965
—14 0-0808 o7 - 07580 2.8 0-9974
—1-3 0-0968 . 08 - 07881 2.9 09981
—1.2 01151 . .00 .. 0-8159 - 30 0-0O87

92
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9.8 Since table 9.4 ouly gives values appropriate to a mean of
zero and a standard deviation of unity it cannot be used directly
to caleulate binomial prohabilities. The mean and standard devia-
tion of & binomial diséribution are first required. Tt is found for
any binomial distribution that

Mean number of successes is wp,

Standard deviation of the number of successes is Jrpg.

¥ N\
N
¢ \A
NS ¢
Fx) (O
S
A
x ) . “ x

Fig. 9.4. Normal distribnition, mean ero,
Atagm ki CAE P Brtd tabulated

*

These values can be veriﬁ‘edhfbr & particular case. Congider, for
example, the expanmo;\li:,\ (@+p)",
with individual probabilities %, 3¢%p, 3qp?%, p®. The mean number
of suceesses will & _

0%+ FXB7%+2 x 3¢p2+ 3 X %= 8p(g+ 2pg + p%) = 3p,
sinoe A\ ¢+ 29p+p*=(g+p)=1L.

This \a;givees with the formula #p when 7 is Put equal to 3, The
Vargta‘nce of the number of Saccesses, applying formula (7.1), will be

(0—3p)® ¢*+ (1 -3p)2 342 4. (2 _ 3p)* Bgp?+ (3 —3p)? p3,

and this simplifies to 3pg remembering that p +¢=1. Hence the
standard deviation is equal to V3pg and agrees with the formula
above taking # equal to 3.

Suppose now that z is the variable having the binomial distribu-
tion characterised by (g+p)». From ahove, the variable » has a
mean of np and a standard deviation of /rpq. Thus the variable
{x—np) will have a Zero mean, since np is a constant, and by
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reducing each value of z by its mean value the average value of
the new variables must be zero. The standard deviation of the
variable will still be \/npg, but if the variable

T—np
rpy

is considered this will have both the desired properties, namely,
a mean of zere and a standard deviation of unity. Such a variable
is referred to as a standardised variable. Tt is still not quite in the .
ideal form for calculations, since an allowance has to be made for
. the fact that x only takes integral values, whereas the ngr'm&l

9 - xLI %z x+.1
Fig. 9.5, Approxj:na;tiﬁ‘q\ﬁo binomial with normal distribution
&
distribution is contifubus and can take any value. By making use
of the normal ctie¥e tables, a smooth continuous curve is being
visualised so ‘@EE some form of correction has to be made.

If the px}):ba’bi]ity of just @ successes is required, fig. 9.5 shows
that a réasonable approximation is to take the area under the
normélcurve from z—3 to w-+} and assume that this %s.equa;[ to .
th\ﬁﬁéaded area. To find the sum of a series of probabilities corre-
sponding to z, #+1, z+2, ..., it is only pecessary to find the area
under the normal eurve not from z to infinity but from z—3 to
infinity, This correction of taking the area from a point  nearer
the centre than z is called & continuity correction.

There are two cases to consider. For the probability of = or

fewer successes the function to be used 18

z—np+3

Npq
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whilst if the probability of  or more successes is required the
. dis
function used is 2—np—3
Napg

and the probability in table 9.4 subtracted from one to give the '

right-hand tail. Clearly this procedure must result in an approxi-
mation to the true probabilities, as the normal curve has abscissae
stretching theoretically from minus infinity to plus infinity, where-
as the binomial distribution only goes from 0 to = incluive.
However, it is a very good approximation and is excellent for Jarge
valuea of #, The figures given in table 9.5 illustrate thig. Heére nine
particular situations have been taken, and for ear;h the exact
probabilities, together with the approximate proba,bﬂltses, that »
is greater than or equal to x,, have been compu‘te‘d For example,

the first case requires the exact probability

~NY;
Pr {12} -+ Pr {13} 4 Pr {14} + 4

=200 (04112 (0-6)8 + 20013(0.4}1& (g.‘g)? o+ 200 (0-4)14 (0-6)% +-
=0-03554-0-0146 1 0- 0049 1—0 /0013 + 0-0003 + ..

= {(+0586. W d_brauhbt ary org.in

Table 9.5. G&gnpamson of bmomwz probabw.htws

"\\ Pr{zza)

A Exact Approximate
P\ ' binornial normel

% '\ P @y probahbility probability
20"\ 04 12 00666 0-0551
\§ 05 14 0-0577 0-0588
) 0-6 18 0-0510 0-0551
NS 80 (U 14 0-2855 0-2881
N\ W _ 05 T} 0-4278 0-4276
N/ 06 19 04311 0-4281
" 4n 04 17 0-4319 0-4358
o5 21 04373 0-4372

0-6 26 03174 03142

For the approximation, take
12 — (20) (0-4) — 0-5
A/(20) (0-4) (0-6)

and using a more complete version of table 9.4 it is found that the
area up to this abscissa is equal to 0-9449. Hence the area beyond

=1-5975,

e dite
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the abscissa, which is the area required, will be 1—0-9449 or
0-0551. Comparing this with the exact value of 0-0566 we see that
there is an error of —0-0015 in the approximation. All the other
values in the table can be obtained by similar processes. The
approximation seems good for all the examples quoted, and if the
number of trials, #, is large it improves. The approximation is
valid provided p is not too close to 0 or 1 and the range of values
of p for which satisfactory results are obtained is found to be
roughly

n+9<-p<n+9'

Thus if # = 20, the rule gives 0-31 <p <069, or if n=30, theJule’
gives 0-23 < p < 0-77, and in general the larger the value of » the
wider the limits allowed for ». 7.\

9.9 The use of the above approximstion will no¥w. be illustrated
with an example. Remermber that it is perfectly@éssibla although
somewhat laborious, to calculate ex&ctly thaltequ_u'ed probabilities
from the binomial distribution.

www.d b aullbral y.org.in

Example 9.6 Over a period of timgalarge number of mice have
been given an infection which is\ Temstant to penicillin. A pro-
portion 0-42 of the mice subsequent]y die from the infection within
a week. A mew type of &Ilﬁlblotlc has been discovéred and it is
desired to see whether(this’antibiotic will reduce the number of
deaths from the infection. To investigate this a group of sixty-five
mice are randomly{gelected and given both the infection afud' the
antibiotic. Of this group twenty-two subsequently die within a
week of beinggiven the infection. - On the basis of these figures has
the antibigtic produced a reduction in the death-rate from the
11:|fec:=t1cn;1E
If 'the’ antibiotic has had no o effect the probabilities of 0, 1,.2, .

deaths oceurring amongst a group of sixty- -five mice given the
infection will be the successive terms of the binomial expansion

(0-58+ 0_-42)"5 where n=065, p=042,

To find out whether the antibiotie is effective the lower end of the
distribution has to be examined, since if there were any beneficial
effect it would result in fewer deaths occurring. Hence the prob-
ability required is the probabxhty that- twenty-two or fewer of the
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mice would die if no reduetion in the chance of death had taken
Place and this requires the sum

Pr {22 die} +Pr {21 die}+ Pr {20 die}+ ...+ Pr {0 die}.

To calenlate all these twenty-three terms individually would in-
volve a great deal of arithmetic, but since the values of n and p
satisfy the conditions laid down in section 9.8 the norma] approxi-
mation can be used. The first quantity to be calculated is
2 @)042) 105 | N
J(65)(0-58)(0-42) — ' O\

"N

Referring to table 9.4 the area of the normal curyeup to the
ordinate at the abscissa of — 1.9] is equal to 0-113%, This value is
correct to four decimal places. Thus & result §ueh as has been
obtained here, or a more extreme one, wouldhaéour in over 11 %
of experiments even if P were unchanged from 0-42, and this does
not therefore seem to be such an un]ikg{y ppening that a con-
fident statement of the superiority ofhe antibiotic can be made.
It it were still desired to pursue bhe effect of the antibiotic, further

data would have t\?,“}?\,?,‘ ggrl‘lf.eﬁ?ﬁ(rt{fyM'g-i“

NS

~EXERCISES

9.1 Four dice are throyvq\simultaneously and the number of sixes, =,
noted. x can take th five'values 0, 1, ..., 4. Find the probabilities that
x takes each of thes;i‘ve values. What is the most Likely value of x;
that is, the value-ofid with the highest probability?

A

9.2 Six pennies’are tossed simultaneously and the number of heads
obtained ig\feted. If the procedure is repeated sixty times how

many ht@s would you expect to have just one head, two heads, three
heads, %, 8ix heads amongst the six coins tossed?

9.3 ”\A marksman on average scores a bull with 40 % of his sghots
Swithont using an arm-vest. Given an arm-rest the marksman fires ten
shots of which six are bulls, Would you say that this resyli shows that

the use of & rest improves the marksman’s shooting or no$?

9.4 Routine tests of glass bottles consist of subjecting them mechani.
cally to a heavy test blow and seeing if they break under the blow. At
Present the breakage rate is 25 %- To test whether a, new basic material
used for the hottles iy stronger, a samplo of fifteen bottles is taken and
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9.5 According to a certain mortality table the probability that a man
aged thirty dies within thirty years is 0-247. Five hundred men aged
30 are selected at random and of these 110 die within thirty years. Is
this evidence in accordance with the mortality table, or does it appear
that the mortality table overestimates the rate of mortality ?

9.6 In a packet of flower seeds it has been found in the past that on
average one-third of the seeds give red, and the remainder white,
flowers. A row of seven aseds iz planted. Calculate the probability
that the row will contain

{(¢) no red fowers;

{b) just one red flower; . R

{¢) no white flowers. AN

9.7 Radio valves are tested by subjecting them to a large electric
shock. Each shock has an independent chance of 0-8 of destfoying the
valve. How many shocks must be given to a valve in ?rge;r that the
probability of the valve being destroyed is ab least 0-994>

98 Assume that boys and girls are born in equa]\numbers. Calculate
the proportions of families with four children that have 0, 1, 2, 3 or
4 boys. What is the most probable number of/boys, that is, the number
of boys that has the highest probability?\ Calculate the mean and
standard deviation of the distribution that-you have obtained.

wow wittbraulibrary org.in, .
9.9 On an average one telephone out of four ip a City business area is

busy between 11 a.m. and 12 noon}) If nine randomly selected numbers’
are called between the two tindés mentioned, find the probability that -

(@) all are free; o) :

(b) one and only one i%\lqn&vaﬂ&ble; -

(¢) two or more of the numbers are unavailable.
9.10 The probabilitj;r'\af a person getting no aces when .dea.lt a hand ?f
thirteen cards fromran ordinary pack of fifty-two c&rds is 0-30. What is
the probabilit§fhat a person plays six hands of bridge and

(@) never'gets an ace in any band;

() always gets at least one ace in every hand? |
9‘11":44\\1’1 ordinary six-sided die is tossed 240 times a,n'd on i"orty-eig]:}t
of the tossings s six is obtained. Is this result compatible with the die
being unbiased ?
912  An ordinary penny is tossed twenty
in the twenty tossings. Would you doubt the unbiased nature of the
Penny? _ -
913 An ordinary penny is tossed 400 times and gives 240 heads in th?
400 tossings. Would you doubt the unbiased nature of the penny?
(Note that there are twenty times as many tossings and twenty times
48 many heads obtained in this case as there were In eXercise 9.12.
Why do the two questions seem to give different answers?)

times and gives twelve heads
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9,14 Two boys each toss a true penny five times, Calculate the prob-
ability that they get the same number of heads.

9.15 In a biochemical experiment twenty insects were put in each of
100 jars. After being subjected to a fumigant for 3 hr, the number alive
in each jar was counted.

No. alive ¢ 1 2 3 45 6 7 & 9 Total
No,ofjars 3 8§ 1} 1 18 14 12 11 9 1 100

Investipate whether it could be considered that each ingect ha.s\a.
common chance p of surviving the fumigant, Do thix by caleulating
the mean of the observed distribution and equating it to the msan of
the binomial distribution (¢+p)*. The binomial should give-the prob-
abilities of 0, I, 2, ... alive, provided there is & constant B The value of
# is known to be 20 as there are twenty insects in each Jar, and as the
mean is np, p may be caleulated. Fma]ly calculate the e&pected number
of jars in which there are 0, 1, 2, ..., insects alive’by multiplying each
probability by 100, the number of j ]aers observed. “A tomparigon between
the observed and expected series of numbery’ patl now be made.

916 Three hundred and twenty rows ok seehs of & certain vegetable are
incubated. Each row has five seeds, and after & certain period the
number of rows in which O, 1, 2, ~en 5 seeds germinated was countbed.

No. of seedls gernittsdDr 3“‘6’”‘““’1“‘“’ W 3 4 5 Total
No. of rows . 8% 122 88 21 8 2 320

By fitting the appropria \theoretlcal distribution discuss whether the
daita are consistentywith the assamption that the chance of an individual

" seed gea::mna,mngm 31 the rows is the same. (Hint: equate the observed
mean with the n}ea.n of (g+p)®.)

9.17 Siztg(—éi&nlitters each of five mice were examined and the number
of fema]%’gniee counted.

A% No.of femalemies 0 1 2 3 4 & Total
L) No. of litters 2 15 21 21 6 1 o6

9, .
Do you think the data are consistent with the assumption that the
chance of a mouse heing female is the same in all litters?
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10

TESTS OF SIGNIFICANCE

10.1 In the last chapter attention has been foeused on the
reduction of the data in & problem into the form of a probability,
80 that judgment can be made as to the likelihood of oocurrence
of observed results. The normal curve, or normal distribution; {
was introduced as the limiting form of the binomial distribution
when » increases. This limiting form has a mathematical baek-
ground and it can be derived in'a theoretical manner, However,
the normal distribution also turns up in many other yva,jrs, and it
is this feature that gives it a central position in stgbistical theory
today. Many of the distributions of height or weight or breadth
of animals and plants, for example, or of the'diﬁtémions of manu-
factured articles, are found to be very close/t0the normal distribu-
tion in shape. This does not mean that thehessured values follow
& normal distribution exaetl Y%ﬁtﬂfﬁﬁ%‘if_ﬁéﬁ'y{ﬁ?&ﬁ‘ sufficiently
closely to make the normal distribution a ‘reasonable starting-
point for statistical caleulationsand deductions. Other advantages
are that the normal distribt@“on is easily handled mathematically,
has certain well-defin: fk;iifoperﬁieﬁ’ and has been extensively
tabulated. Referﬁng.% he diagram _of _the_nqrmal distribution
in fig. 9.4 and labelling the co-ordinates (z, y) the equation of the

¢ i £ ) .

R ‘..;.\;F_}__egp[_.l(”“?)s], (100
o N A(2m) 8 2\ ¢/

where % whd s are the mean and standard deviation of the distri-
b“ﬁm};\ﬁnd ¢ is the base of natural logarithms (the constant
271828). Thus table 9.4 is caleulated on the basis that 2 is zero
and s is equal to one. To find c_omsponding normal distributions
‘with different values of Z and s is & fairly straightforward matter.
If s is kept constant the spread of the distribution remains .the
same but the location of it will change. This follows becauss if a
set of obgervations are all increased by a constant a,mount. t]:ten'
mean value is increased by that amount but the standard deviation
is unaltered. From (10.1) the value of y for a GOI.ISﬁa:IIt value of s
depends only on the quantity (¢~ E). This quantity is unchanged
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measure of the spread af\the distribution. Although the ordinates

never quite becomi?ré at either extremi ¥ the bulk of the distri-
bution i3 seen to be

ontained
‘.\".b’étween —3and +3 when s=1,

.j\:"' between — 6 ang +6 when s=2,
\\~\ between — 9 ang +9 when s =3

S

&ndm general it is found that the distribution ig approximately
-enbained between — 35 and +3s. :

3

An example will demonstrate the techniqus.
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of at least £600 and it is found that 929 of the members do in -

fact belong to the fund. What proportion of members earn more

than £800 per annum ?
Suppose that the unknown standard deviation is s and that z
is & member selected at random, Then it follows that '

x—"720
1= P

i8 & unit normal variable. From table 9.4 if 929, are above a
point z; and hence 8 %, below z,, then the value of @, is —1-4051,
In this case the corresponding salary, z, is £600, so that

600—"720 ' - 3
8

'\. \

= 14051 or s=£854. .\

S
.

To find the proportion who earn more than £800 it is rigtessary to
convert £800 into a unit normal variable. This gives)® :

800720 0 ouss O
85-4 S

and from table 9.4 the area to th Qggb P}te ordinate at + 0-9368
18 0-1745. Hence some 174 9%, of the members & will Bive salaries in

¢xcess of £800 per gnnum,

ay *

1.3 1In chapter 8 samples &R various sizes were drawn from a
populatich and it was observé‘fiaﬁ'ﬁﬁ% ¢ staridard de viation of

the original observa,tmnwas &, that of the eans Of the sa.mples

~of-gize " wag equ%“ww%ﬁmﬁ that as the size

0% samplé inére m@gg tended to be

normally chstnbﬁted even thongh the or:gmal variables were__

0oy Eﬁemﬂe&es Tormally Tstithated, Tt 1a & matheratical pro-

eIty “thadl I the origmal. variables are normally distributed the

3&m131@ meanﬂ are similarly c d.mtnbuted but with altered constants.
Thig )
" Individuals: normally distributed mean 7, standard deviation s.
Means of samples of #: normally dJstrlbuted mean %, sta,ndard

deviation 8fjn.

This property is exact if the variables come from a normal d]s-_

-----

fxl’fﬁuﬁlon but ofherwise only approximate, “although ‘the approxi-
mation improves very rapldly ag n increases, When examining

s R

the means of samples, it i8 T"g”'ﬁimate to assume them to be

Q
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approximately normal in their distribution even if it is known
that the original observations were not so distributed. For con-
venience of deseription it is usefal to distinguish between constants
that belong to the popuiation of individuals being sampled and
constants calerdated from the sample values obtained by sampling
the population. Tt is customary to use Greek letters for the former
and italic letters for the Iatter giving: £ (xi) for the population
mean, Z for the sample mean ; ¢ (sigma) for the population standard
deviation, s for the sample standard deviation. O

0al
03F

02~

Scale of y

01r

8 \wa,dlygalfl}ﬁ pryorfgin L " s .

¥ig. 10.2. Normal distribiitions £,= 10, £,=12. ¢=1 in both caes

AN
Suppose then th@:a; normal population is specified by the values
£ and o. Then ifrandom samples of size n are drawn, the mean, Z,
of such samplés will itself have a distribution that is normal.
The constants’of the distribution will now be £ and o7/,/n. That is,
it will stili*be located at the same place but will be much more
pinchéd'in appearance.

pri Mthe examples of chapter 9, such as 9.6, the questions asked
%ere of the form ‘is the Probability of an event P, or has it in-
ereased?’ Now that the interest concerns a measurable charac-
teristic, and not just presence or absence form of characteristic,
& typical question would be ‘does this set of observations come
from a population with mean £, or does it come from g population
whose mean is £, where £, is groater than £,2° As an example take
£,=10 and £, =12 with o equal to 1. Tn fig. 10.2 two distributions

are given: . :

(1) normal distribution mean 10, standard deviation 1;.

(i) normal distribution mean 12, standard deviation 1.
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These two distributions overlap a great deal. Thus if one observa-
tion is drawn from the population and its value is 10-4 it is im-
possible to say whether it comes from the distribution specified by
(i} or the distribution specified by (ii) since it is quite a likely
ocourrence in either case. But suppose that instead of drawing
just one observation and messuring it a sample of sixteen observa- _
tions is drawn, each observation measured and the mean of the
sixteen observations found to be 104, The distributions of the

16
O\
NS ¢
12 - O\
N
(:\ o
8 ¢ &/
g 08 o)
L]
h
04 -
0~ S Aa 131"du'i'1b1ar O T
8 ° 0 i 2 30 e

Fig. 10.3. Distributions 8f weans of semples of 16

means of samples of sixt&eﬁ}&om the two populations specified in
{i) and (ii) above are: I _

(1) normal distribfubion mean 10, -standard deviation 0-25

'{:1/‘\]16)§ . \ L N o

(ii) IlOrmal&cﬁéﬁribution_ mean - 12, standard deviation 0-25
(=11419). O - |
Fig. 10.3.8hows how these two distributions only overlap very
slightlg and the value 10-4 for the observed mean of g_i);rteen ?b-
servations is a very strong indication that the population being
sampled is the population that has a mean equal to 10,

104 For small samples it is not, as a rule, possible to state that
the observations come from one population rather than another
with absolute certainty. Accordingly. the questions asked are
framed in more gualitative terms such as ‘do the sa,rf:tple refr.ults
indicate a sionificant i i the. o6 lue from its previous

' V»‘?‘i‘jﬁﬁ: Te do this acnexamln&tlonlﬂ made (as in the previous
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chapter with the binomial distribution) to see whether the sample
results depart significantly from the basic situation. A test of this
form is referred to as a fest of significance and is illustrated below
by an example.

Example 10.2 A machine is packaging nominal 8 oz. packets of
) sugar and it has been found that overa long period the actual weight
of sugar put in the packet has been normslly distributed with a
mean of 8-1 oz. and a standard deviation of 0-04 oz. The sefing
on the machine which regulates the amount of sugar put\in is
thought to have been accidentally altered, and to discoverwhether
this is so, a sample of ten packets is examined and_the sugar
weighed. For the sample the mean weight of sugak'in the ten
packets is found to be 8:123 oz. < 0,

First of all it seems a reasonable agsumption that even if the
average amount of sugar per packet has beenaltered the standard
deviation of such amounts will be unéhanged. It is therefore
agsumed that the standard deviation cﬁ‘ the amounts is 0-04 oz.,
irrespective of the value of the nedn. Since the new level of
packaging is unknown all that edit be done is to see whether the
observed results ar¥ YoARISHHIIHR ke being no change in the
level of packaging. Tf the“results are inconsistent with this, the
conelusion would have(%0' be drawn that the level had in fact
altered. Now the ins of samples of ten from the original
Population would }ie distributed normally, with mean 81 0%,
and standard ql\eiri&tion 0-04/,/10. Hence the quantity

Samiple mean ~ Population mean _ &8l
(Standard deviation of sample mean 0-04/,/10

isa um} normal variable, that is to say it has a mean of zero and

a standard deviation of unity. Here % is equal to 8123 and so
) - Z—81 0023
0-04//10~ 0-0126
From table 9.4 it is found that the area to the right of the ordinate
at the absciesa 1-818 of a unit normal variable is equal to 0-0345.
Thus in & proportion of only 0:0345 of samples, or about onee in
thirty times, wonld a mean as large or larger than that obtained
here regult from sampling the population with mean 8-1 oz. This
is quite an unlikely occurrence and hence it would be reasonable to
say that there is some more likely population from which these

=1-818.
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samples are drawn. If the population mean was higher, 8-12 oz.
say, the chances of getting a mean as large as 8-123 or larger goes

up to 0-41. This is now a much more likely event and is good evi- .

dence that the mean value has in fact increased. The right-hand
or upper tail of the normal distribution was used for the test of
significance because if the mean of the population increases values
‘in the right-hand tail have much higher probabilities. :

10.5 One other consideration must, however, be borne in mind,
The value 8:123 oz. has been taken as a significant result, signifi-
cant in the sense that it, shows some departure from the stand@::('i\
weight of 8-1 oz. But suppose that the mean weight of th?"%ﬂ
sample packages had come to be 8:077 oz. which is _as'f:aa:',’bélow
81 as 8-123 is above. In this case the standardised v?;iable is

2=81 _ 181 '
&

0-04//10 A

From table 9.4 the probability of getting ;t]:ge;\dbserved value of &
o a more extreme value, that is a lower alue, is equal to 0-0345.
Since this is indicative of an evenbwhatlisaiibediars it isreasonable
to conclude that the a,verage' levgl;‘éf Toading has in fact changed
This shows that getting a meariof 8-123 oz. and saying that ..1{3 is
indieative of a change in population mean, implies also that a
mean of 8077 or less will\be taken as indicative of a change in
mean. Hence overall the roportibn of times that such a divergent
or more divergent, Qié&n could occur by chance is. not 0-0345 but
2x0-0345 or 0-069/ This is not quite such an mnlikely event -acnd
in faet would &seur about once in every fourteen times, and might
Hot be reg e as so exceptional as to throw dpubt on the
asumptigh that the mean is equal to 81. -
Thig\ealeulation does not imply that the probabﬂlty' is always
autordatically doubled whenever the probability of one discrepancy
‘has been calculated. The appropriate probability has to be deter-
-mined in the light of the question that has been posed. nglcale
three types of question can be posed and for eaqh type the treap-
ment is slightly different. : ' -
() The machine had an average of 81 oz.
is the mean still the same or has it increased ?

After the accident

- Ifthe population mean of 81 0z.18 rejected, the alternative now -

81 oz.

MF

18 that it ig greater than 8-1 oz. A saniple mean of less than

Io |

QY
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is clearly more likely to come from a population with mean
81 oz. than fror & population whose mean is greater than 81 oz.
Thus any observed mean less than 8-1 oz. gives no indication of a
change in population mean, because even if there is a small prob-
ability of such & mean arising from a population whose mean is
8:1 0z. there is an even lower probability of such a mean arising if the
population mean is greater than 8-1 oz. The observed mean in the
sample of ten was 8-123 oz. and probability theory says that the
chance of such & mean, or a greater one, arising by chance frem
a population with mean 81 oz. is 0-0345 and this ig such an/aplikely
event that it is rejected in favour of the mean being gréater than
8:1 oz. The probability is not doubled to include thé other tail of
the distribution since any observed mean below §sPoz. will not in
any way suggest that the mean has increased-above 8-1 oz.

(6} The machine had an average of 8-1 dZ\"After the accident
is the mean still the same or has it decrensed ?

This situation is just the reverse qf‘ﬁ) above. Sample means
that are below 81 oz. now throw dolibt on the mean being un-
changed. Those that are above 81 oz. are even more unlikely to
oceur if the popu]mjgpdm.g@,ng;{ggbdggggwed and hence such means
are no indication of a chémge. An observed sample mean of
8:077 oz. implies that there is a probability of 0-0345 that such a
result, or a more divgrgﬁnt one, could arise by chance in sampling
from a population‘whose mean is 81 oz. Since this is such an
unlikely happening it suggests that the mean has in fact decreased,
because withadecreased mean the probability of such an observed
mean is maoh greater.

(¢) The’machine had an average of 81 on. After the accident

is the mean still the same or hag it altered, that is, either increaged
or-Qdecreased ? '
) "This is the original problem that was considered. Here a sample
mean that is above or below the population mean of 8-1 oz. may
be considered significant since such sample means could arise if the
mean had in the first case increased and in the second case de-
creaged. This leads to the use of the combined probabilities from
the two tails of the distribution, since an observed mean ahove
8-1 oz. must be just as significant as an observed mean the same
amount below 8-1 oz,

Summarising, the three situations lead to slightly different testa:

(a) uses the right-hand tail of the distribution;
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(b) uses the left-hand tail of the distribution ;

(¢} uses both tails of the distribution.

The decision as to which situation is the correct one must be
decided from the relevant wording of the particular problem before
the numerical analysis is carried out. It is quite incorrect to carry
out the analysis and then choose whichever of the three cases
produces .the most significant result. This will lead to erroneous
decisions and the only safe course is to decide in advance which is
the appropriate situation.

10.6  When the test of significance has been carried out the result
is given in the form of a probability. This probability stated the
odds of such an observed result occurring by chance, J’gh\én the
original situation is true. As this probability gets/sthaller and
smaller there comes a time when it is felt that the p@dé are so long
that another alternative situation must be theriie one. In the
foregoing it was suggested that although a probability of 0-0345
was small enough for the basie situation4o be rejected, a prob-
ability of 0-069 was not small enough. ItisTmpossible to lay down
hard and fast rules as to thewexdbtdéhblewinsmibne situation is
rejected in favour of another, ag 86 much depends on the back-
ground of the problem under disdussion. If making a wrong decision
is only a small matter that siibsequent experiments can put right
at little or no cost o the(anufacturer or consumer then a prob-
ability of, say, 0-05 ngt%h\l; be appropriate. If, on the other hand,
a decision to change'iivolves costly new plant and equipment the
change should ngt take place unless it seems certain that there is
a djﬂ'erence,‘a‘.n&'éo a lower level of probability is required, say,
0-01 or ew}\ﬁ@OOI. There has grown up a rule of thumb which
states: . ‘ _ ) _
if probability greater than 0-05: take no action;
if "probabi.lity between 0-05 and 0-01: a warning, further ob-
servations desirable; '
if probability less than 0-01: take action.
A probability lower than 0-05 is frequently marked with one
- asterisk (*) and one lower than 0-01 with two asterisks (**),
This is conventional only and it does not mean that every experi-
ment should automatically be judged on these standards. Each
experiment should be judged in the light of all the background
mformation available and s decision made on the appropriate
' i 10-3
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probability that is to be regarded as significant. The Probability
deduced from a test of significance s referred to as the level o

is 0-05 this can be referred to as the 5 % level of significance,
The tests of significance ultimately require translation of a unit

be avoided to some extent by tabulating the values of the abspissa,
%, corresponding to specified taj] Probabilities. In table IO some
values are given'correspondmg, in the first place, to the ‘pne-tailed
test, Thus the probabilities tabulated are for a normal’ variable to
be ‘below %’ or ‘shove %,’ separately but not, fo¥'the combined
-event ‘either below % or above 2,’°. For,tha latter event the
tabulated probabilitieg have to be doubledand these values are

given in the last column of tahle 10.1, \\

\N
Teble 10.1. Normal distribution probabilities
Brobability of Frobebility of
Aeing ‘below z,° being ‘either below

b wwwqj,bmulibi’fﬁ')bﬁ*‘%e z,’ #; or above x,°
—1-2816 +1-2818, 103 0-2
—1-6449 +1-6449 0-05 o1
—1-9600 +1-96 0025 0-05
~2:3263 23263 0-01 0-02
—2:5758 8758 0-005 001
- 3-0002 L F3-0902 0-001 0-002

-The question to be answered is whether the percentage ash content
in the coal from the sécond colliery is the same ag from the firat
colliery. . '

The mean of the five sample measurements is 14-8 ang this has
o be compared with the Previous mean of 14-2. There is thys 5
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difference of +0-6 and this difference has o be examined to see
whether or not it could be regarded as significant. The test used
will be a two-tailed test since the question merely asks whether
there could be any difference and not whether there is a difference
in any particular direction. It will be assumed that the standard
deviation of 1-2 is unchanged. This seems reasonable enough, and
the five sample values are consistent with their having a standard
deviation of 1-2. Hence the mean of a sample of five will have a
standard deviation of 1-2/,/5 and the criterion to be used for the ,
test of significance ig

14-8-14-2 .
et PR 1Y 1 7 T O\
12/J5 R\

From table 9.4 the area beyond the ordinate at 1-118 for, 8 unit
normal distribution is 0-132, and hence the ares inJboth tails
combined is equal to 2 x 0-132 or 0-264. Thus sncharesult, or an
even more divergent one would oceur in about a quarter of experi-
ments where five samples were drawn from & *p\)pulation with a
mean value of 14-2. Tt seems reasonable to-eonclude that there is
no evidence of a change in the mean value ‘of the ash content of
the coal produced. www,dbr"gtfljbl'ary.org.in

Hzample 10.4 Tt has been found: that the length of cuckoos’ eggs
in place 4 is distributed with axmean of 22-30 mm. and a standard
deviation of 0-0642 mm. Whilst visiting place B an ornithologist
collects fifty-eight eggs bf\iihe_ same variety of cuckoo, examines
them and measures their length. The mean of the fifty-eight
- lengths is 22-61 mm‘.\.}fssumjng that the standard deviation of the
length of egg is the'same in the two places, does this evidence show
that the eggs 6f'the cuckoo are longer in place B than in place 42

First of allf there is no difference between the eggs in the two
places i mean of & sample of fifty-cight eggs should have a
norial distribution with mean 22-30 mm. and a standard deviation
of 0-9642/,/58 mm. Thus the quantity

F—22:30
0-9642//58
should be 8 unit normal variable. In this case #is equal to 22-61 mm,
and so the quantity reduces to

22:61-2230_, .o
0-0642//58 -
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Sinee the question asked is whether those found at 3 are lIonger or
not, the right-hand or upper teil is needed for  test of significance,

Reference to table 9.4 shows that the ares to the right of the
ordinate at 2-449 of g upit normal distribution is aqual to 0-0072,
Hence only about once in every 140 times would such a divergent
result be produced with g sample of fifty-eight from a population
with a mean of 22-30 mm. T4 seems much more likely, therefore,
that the true mean is greater than 22-30 mm. since if that were RO
the sample result would have a much greater Probability &f odour-
rence. Thus the hypothesis thai the length of eggs at, place B is

the same Population, so th tvéhe two means should not differ at
all. Due to saﬂﬁﬁn%brﬂ&t%ggigs%%me difference between the
means is observed, andrthe question arises as to how large that
difference can be before it becomes significant of 8 difference be-
tween the means &{ﬁthe W0 populations from which the samples
have been drawn\I ot Z; be the mean of the sample of », individuals
drawn from €48 first Population and let the standard deviation of
ndividualsinthe population be o, Similarly for the sample from
the Seﬂﬁfj‘j population the mean is taken as T, the number of
indiviftuals as 75 and the standard deviation of the population as o,
Th\e Suantity that has to be examined is the difference

qua.ntity is approximately norma,]ly.djstributed with a mean value
of zero and a standard deviation of C

3
Ry my

This result is exact if the origina} populations are both normal but
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is otherwise only approximate, a.lthough- a8 ny and %, incresse it
becomes more and more nearly exact. The following example
ilfustrates the whols procedure.

Example 10.5 Two plantations in Malaya are supplying rubber in
batches to a factory. The factory has over a period of Fears been
checking the tensile strength in kilo-grams per sq. ¢m. on samples
from each plantation and hag found that the standard deviations
of the tensile strengths are 6 kg. for the first plantation and 8 kg.
for the second plantation. The factory is interested to know whether<
the mean tensile strength of the rubber in a certain batch is the
same for rubber from the two plantations and examines twelve
specimens from the first plantation and sixteen from the, sgcond
with the following results (in kilo-grams per sq. em. }; o\

o
First plantation 200 201 181 1938 179 188
188 182 . 187 185 204  J8d
Becond plantation 188 189 201 174 19@,3\\169 181 169
198 174 198 188 196 Y11 185 170

From these figures the following valuey m%ﬁ@gﬂﬁ{i

F=101, @,=185;

of o), V(36 64 _ .

J+ 2= (s vs) =
\’\‘“’ — 926458,

If there is no differente between the means of the two populations,
the quantity 7, Rﬁ‘g\wﬂl have zero mean and standard deviation of

A& : o3 0'%)
) 9 . 2=

A J

which iniplies that Z -,
N\ T
IR
, Ty | Ty

will be a unit normal variable. In this example
| Lo 8 oo,
J(a§+ag) " 26458

From table 9.4 the area of the normal distribution to the Tight of
the ordinate at 2-268 is equal to 0-0117. However, a two-tailed tes
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 ia required here, since the question agks whether the strength is the

game in the two plantations and not whether it is greater in one
particular plantation. This gives the appropriate probability as-
2% 0-0117 or 0-0234. Thus this particular result would be rare if -
the two means were the same, but perhaps not quite uncommon -
énough to be conclusive, and hence although the evidence is highly _
suggestive that the first plantation has a greater strength it is not
overwhelmingly strong and some more observations would be
desirable. ~

\,{10 9" The two tests that have been used in this cha,ptei' an be
summamed as follows: y

Om sample test. Sample of n. Meau of sample %,
Population mean £. Population standard deviation o. .
Caleulate : \

: _&—E NS

can \
Refer to normal distribution table for" corraspondmt, probahility.
Decide whether left-tail, right-tail or two-tailed test.
Find appropriate significance Jevel.
PROP el dbraulrb'l ary . 01'8 in
Pwo sample test. First saniple, mean xl, number 7,. Second sample,
mean &, number n,.

Standard demtlong of the two populations o, and o, respectively.
Calculate X\ -
N\ L 17wy

SN _"/(ﬂ-}-ﬁ)'
N | P T2
Ref% *Eo normal distribution table for con‘espondmg probability.
Dgtide whether left.-tail, right-tail or two-tailed test,

Hind appropriate significance level.
A :

EX EEQISE 8
10.1  An analyst is making repeated determinations of the percentage
fibre in soya cotbon cake and has found that the standard deviation of
determinations from the same batch of cake is 0-12, and that the mean

of the detemnatlons is 12:40. A new hatch of cotton cake arrives and
from it ten samples are taken and analysed giving

12-46, 12-30, 12-43, 12-41, 12-58, 12:37, 12-63, 12-25, 12-37, 12:48,

Use these figures to test whether the mean percentage fibre is still
equal to 12-40, or whether it has inereased in the new bateh. '
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10.2 The heights of men in a certain large town are normally distri-
buted and have a mean of 68-40 in. and a standard deviation of 2:13 in.
Find the probability - S

{#) That a man selected at random hag a height over 6 ft, ;

(b) that the mean of & sample of 120 men is less than 68-34 in.

10.3 Steel rods are usually being manufactured with a mean length
of 14-50 cm. and astandard devistion of 0-783 cm. One batch has, however,
been manufactured with a mean length of 14-30 em., the standard
deviation being unchanged. If a sample of ninety-five rods are taken
and measured from each batch is it reasonable to say that the batch _
which has a length of only 14-30 cm. will be easily detectable?

104 Specimens of a certain type of string have a mean bmakiﬁg‘
strength of 17-11b. and a standard deviation of 1-8 1b., the bréaking
strengths being approximately normally distributed. A new ymethod
of manufacture is tried in order to increase the breaking strength of the
string. A sample of twelve pieces is taken, giving the follo%ing breaking
strengths ' L \V

16-6, 19-3, 179, 187, 147, 18-, 199, 206, 1‘6@,.‘17-3, 15-7, 16-8.
Do these results indicate any significant improvement in breaking
strength? ' oM

.dbraulibrary.org.in

10.5 Measurements were made on 4 Ia;égllmmbbér of terminal leaflets
of & variety of strawberry plants grdwn in open borders, and it was
found that the mean leaflet area’was 21 sq. cm. and the standard
" deviation 3 8q. em. Some plants of the same variety were also grown

in & greenhouse and, from thesé, nine wers selected at random and their
terminal leaflet areas in &g\\f}n{ were

27, 24 22, 23, 18, 26, 20, 19, 22.

Do these figures mggest that the mean terminal area of plants grown
in pots in a’ greénhouse is.any different from that of plants grown in
the open? \
106 T il’i}esﬁigate the movement of antibiotics in broad bean plants
the plait)is treated for 18 hr. with a solution of chloramphenicol and at
thend the concentration determined. Experiments on rocted plants
“have ‘given a mean concentration of 54:3 (milli-grams per gram of
fresh weight) with a standard deviation of 4-5. Ten cut shoots of bI:Oﬂ:d
bean plants are now treated in the same way and the coneentrations

e - 50, 53, 58, 57, 63, 62, .55, 65, 46, 60,

Do these figures indicate any change in the mean level of concentration
of chloramphenicol? Assume that the standard deviation is unaltered.

10.7 - The length of eggs of the common tern are approximately
normally distributed with a mean of 4-11.cm. and a standard deviation



S 154 PRINCIPLES OF STATISTICS

of 0-19.cm. A sample of eight eggs was collected from a completely
fresh part of the coast and the lengths, in centimetres, were

41, 44, 4.5, 4.1, 39, 44, 4.6, 4.5,

- Would you regard this sample as indicating a real difference in egg.
length in the new locality?

10.8 Cement mortar briquettes are being made and the breaking
strength of the briquettes measured. The standard deviation of the
breaking strength has been found to be 17 Ib. Two samples each of ten
briquettes are available and the breaking strengths are \

Bample A 818 808 554 565 536 544 532 530 55,4\?&42
Sample B 844 538 554 540 006 534 548 530 AEBR, B22

N\

Test whether there ig any difference between, thezlﬂea:n strengths
obtained in the two samples, 7

of either veriety is equal to 0-32,

’ (N
‘Ten plants of varisty 4 and eight of variety B are harvested with the
following results : N\

Varioty 4 1.875 1.407 1-068 1-752 3.778 1.201 ¢.779 1-042 1.223 1-833
Vericty B 1-088 1.217 0-984 16164693 0.673 (-840 1-252

’ . l"b]‘?.l" -OF ;in .
Test whether the iy gf”bﬁ%jkwc? arieties of fomato is the same,

10.10 Two different makdy of tyre were used on a car and the wear
in thousandths of an iqqh,ﬁfter 1000 miles travelling meagured, Twenty-
four tyres of make A\@d twelve tyres of make B wore used in the experi- -
ment, the results being as follows :
Tred 13407173 233 134 187 185 269 153
10 180 216 158 149 176 222 14.3
S0 164 28 149 184 179 247  ge
Tyze BAJILO 134 149 16 179 182 113 13q
KN 122 150 i3 1rg

?Imous experiments have shown that the standard deviations of the
WEAL per 1000 miles are 3-2 for tyre 4 and 2.1 for tyre B. Investigate
Whether there are any differences in the average wear of the two makes
of tyre. '

10.11 ' The diameter in millimetres of ears of wheat i3 meagsured for
twosamples, 4 and B, In sample A, fifty-one ears are meaaured whilst in
B, sixty-one ears are measured. The results are given below;

Diameter {central valuesa)

35 05 425 445 485 435 5o Total
No. in sample 4 -~ _. 5 18 19 8 1 2 Bl
‘No.insemple B = 5 15 26 11 3 — @
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From previous experience it has heen found that the standard
deviation of the diameter of ears of wheat is 1-84 mm, Use this
information to test whether the means in the two samples gre equal,

160.12 A sample of private houses in two large towns was chosen from
the rating list. Interviewers were sent to the houses to inquire if the
occupants possessed a television set and if so how much it cost. The
results were a8 given in the following table: S

No. of © Average Standard
television comb devistion of
sets {£) cogt (£}
Town A 14 71 10 \
Town B 20 65 15 ¢\

"N\
Assuming the standard deviations for the whole towns are given by the

standard deviations observed in the samples, test whether town’A tends
to buy more expensive sets than town B. "

10.13 A voltmeter is being used to compare the woltage of two so.
called standard cells. It has been found in the past that if a series of
independent readings of a standard cell are fudde they are normally
distributed about the true voltage with. 2/ sta?di.rd devi&ﬁiﬂanT };?f :
0-025 volts. Seven readings were made on-6ach of the two cells. The
first cell gave a mean reading of 1142 SERAHHRIEEY 6848 of 1-143 volts.
Do you consider that the two standatdeells are giving the same voltage
Or hot? NN '

10.14 'The mean and standgx{ti deviation of the weights of 18-year-old -

men called up for National Service in one year were 137-3 and 31-1 I]?.
respectively, Fiftoen.mbn® were selected for a specizl duty and their

weights were (in 1b.):() : . .
1042, 1739\T415, 1729, 2017, 2081, 1718, 1225,
167-5, 1814y 1777, 1767, 1610, 1582, 1803,
Do you co@‘d”ei' that the men selected were a random sampie from the
Pﬂpﬂlaﬁioﬁ of National Servicemen ? .
10,15 :}I‘he purity of a chemical manufactured on a large seale varies
slightly from batch to bateh. Over the past the purity has had a mean
value of 68-4 9 and a standard deviation of 2:3 %. A small modification
of the manufacturing process is now made and the purity of the first
eleven batches produced is:

861, 713, 752, 64-3, 764, 756, 66:3, 633, 658, 624, 734,

- Assuming that the standard deviation is unchanged, has the modification -
improved the process ?
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FURTHER TESTS OF SIGNIFICANCE _

11.1 The last chapter was concerned with tests designed to deter-
mine, on the basis of & sasmple, whether the Population mean wag
equal to some specified amount. An alternative test iy reqtired
when it is desived to investigate whether the variability of the
observations in & population has some specified value,on the basis
of & sample of n observations from the population, Thus & local
corporation might find it more economical +o change all its street
lamp bulbs at a fixed time instead of waiting for individual com-
plaints that a lamp has gone out and then senﬁiﬁg a man to replace
it, If this policy is to be suceesgfu], howg(ef, the variability of the
bulbs must be small, because it would be wasteful to change all
the bulbs if only a few. were buenpout and many burning hours
left in the rest. On the other hand, o delay changing them would
result in angry protests {rom the Tesidents in the streets concerned.
Hence the corporatity %Péi%ijé‘i%"é"&" re biilbs that have little variation
about the nominal length of life. A sample of bulbs coyld be
examined from time t?.gime by burning them to extinction i order
to see whether th variability wag remaining constant,

Suppose that inthe past the average length of life of the bulbs
hag turned oubdo be 1608 burning-hours with a standard deviation
of 381 hr. A.check sample of the bulbs delivered one month is
examined and the eight bulbs selected gave lengths of life (in hours)
of 1507, 1982, 1587, 1221, 893, 1818, 2029 9147,
The’ ean of these eight observations ig 1648, and this does not

< ‘s:éém_to be very far removed from the nominal mean of 1608 hr.
If anything there i an improvement in length of kife which would
1o doubt be welcome to the corporation concerned. Next the

variability is examined and at first sight there seems to be guite
a large variation in the sample values. Caloulations give

-7 =1,310,574, 2 %2@-5}2: 163,821-75, ¢=404-75hr., -

and the first impression given by the figures is that there is & some-
what greater variability amongst the bulbg than that Iaid down
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in the original standard. However, it is to be expected that if
samples are drawn from a population with a standard devia-
tion of 381 hr., some of those samples will have standard deviations
greater than 381 hr. and some of them lower than 381 hr. The
form of the deviations of the sample standard deviations from
381 is, however, no longer in the fashion of a normal distribution

» A
016
012
0-08

0-04

Lt 1 0 0 b g N !

o\ 14
%.rww.dlgvagli%%‘ary,org,m
Fig. 1L.1. x* distribution {n="7)

X

16

*

a8 it was for the sample mean." Another basic distribution has
to be introduced here and stated formally, it reads: :

A sample of # obse wﬁoﬁs is randomly drawn from a normal
distribution whose st;vbard deviation is ¢. Then the quantity

P\ ) Sz -z
where z reg%ésre’nts a sample value, is distributed in the form of
a x* distribation. (y? is pronounced ‘chi-squared’.) ‘

A typical y? distribution is shown in fig. 11.1, where % is equal
to %, and it will be noticed that the distribution is no longer
Eymmetrical but is rather skew, having a long tail to the right.' If
repeated samples of size 7 were drawn from a normal population
with standard deviation o and Z{x—Z)?jc? calculated for each
sample, the values could be gronped and made into a frequency
distribution which would look more and more like fig. 1.1.1 as t_he
number of samples increased. The shape of the distribution varies
according to the value of n, and as » increases it gets morfa aa?d more
like a normal curve in appearance. In table 11.1 the significance
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levels of the y® distribution are tabulated. Both tails of the dis-
tribution are tabulated, eolumnsg (2)-(4) giving the abscissae for
which the area to the left is the amount stated at the head of the
columns, whilst in columng (8)~(7) it is the area to the right,

Sufficient values of n for Practical purposes are given, and the
case of n greater than 28 will be dealt with at & later stage in this
chapter. The tail values to be used depend on whether the problem
is worded so as to involve a left-tail or a right-tail or a two-tailed
test of significance, Returning to the example concerning the
lengths of life of electric light bulbs, the corporation Wag- anxious-
to avoid excessive variability, and hence the altgrhabive to be
considered is that the standard deviation is in excéss of 381 hr.
The appropriate test will then be the right-ta,ilefi test. The figures
obtained for the sample give S :

T(@—F) 1,310,574
o T 1516, 03

Reference to table 11.1 (n=8) sho.\’?cs‘ that this value is quitea -
long way short of the 0-05 signifitance level which is 14-07, and
hence on the evidence of the sample there is no reason to doubt

~

that the variability g the hulhs is-mnchanged at 381 hr.

Table 11.1, Siééaiﬁcance levels of x2 distribution
(1) @ ~«3) (4} (5} (6) (M

Area up g’gbﬂ’cissa equal to Aren beyond absciass, equal to

N ‘hH_—_Ah———-ﬁ

n 0018 » 06-025 0-05 05 0-025 0-01
4 (1N g 0-216 0352 7-815 9-348 11-345
5 0.207 0484, 0-711 9:488 11-143 13-27¢
6 o {0654 0-831 1-145 11-071 12:83%  15.086
I 0872 1-237 1-635 12:592  le4d9 16812
1-239 1-690 2-187 14-067 16-013 18:475
S\ 1646 2180 2:733 15:507 © 17-535  20-000
N 1o 2-088 2700 . a.325 © o 18-919 19-023  21-666
Vo 3053 3818 4-575 19-675 21.920  24.725
4 4107 5009 §-892 22-262 24.736  27.688
16 5-229 6-262 7261 - 24-008 27488 805848
18 6-408 7564 . g.872 27-587 30-191 33409
20 7633 © 8907 10017 30-14¢  32.852 3.0
22 8807 10-288 11501 . 32871 35479  38.932
24 10:-196 11-689  13-091 - 35-173 38076  41-638
. 26 11524 13.130 14-611 37-853 40846  44-314
28 12879 14573 16-151 40-113 43194 46963

112 Two further examples of tests of significance that use the
X* tables will now he given,
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Example 11.1  An experiment was performed to determine the
strength of resin films. First a series of metal panels of standard
thickness were coated with a resin film whose thickness was known.
The strength of the resin film was then measured by a machine
which pressed a steel ball into the panel. This had the effect of
stretching the film on the reverse side until it broke, when an
electric contact was completed through the panel and the machine
stopped. The strength of the film was taken to be proportional to
the depth of penetration of the steel bafl. ‘

It was rather important that the variability of the strength
of the resin films should be kept as low as possible. The standard
deviation of the films was equal to 47 units. By introdusing a
slightly modified manufacturing technique, it was hoped £oirednce
the standard deviation still further. From a sample af séven films,
the strengths obtained were \%

793, 721, 806, 771, 750, T30 701
%

Using these values it is desired to investigat?Whetherthe variability

hag in fact decreased. Now K g o
’ " www.dbratlibrary.org.in

Z=75443 and b~ 7)2=86-52.
Szl _,
W— =35-92,

From the values in #ab}é\li.l corresponding to n =7, this .valu? is

seen not to be sigpifieant, remembering that judgment is bem-g

based on the left-hand tail of the distribution. The value 3-92 i

quite definitely below the mean of the distribution, &nd ib may well

be that a flh&;h'er sample would demonstrate the significance of a

Hence

|

diﬁ'erent and reduced variability.
.\' 3 .

Exa:’;’/ﬁe 11.2 The tensile strength, in kg.jom.2, of specimens of
rubber from one plantation was measured. Past experience had
shown that the standard deviation in the tensile strength of
Specimens from this plantation was equal to 13-7 kg.fem.2. It was
very important from the commereial point of view that the strength
should not have a greater variability, and when a random samPIe
of 8ix specimens was taken from & new consignment, the following
tensile strengths in kg./om.? were obtained:

177, (173, 137, 196, .145, 168
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To test whether the variability has increased or not the following
quantities are calenlated:

S(x —z)2

Z=166, I(z-37)?=2358, s =12-55,
o

Using table 11.1 (n=86), and considering the right-hand tail, the
5-05 prob'a,bﬂity level corresponds to 1107 and the 0-025 probability
level to 12-83. The value 12-55 obtained here is thus near to the
0-025 probability level, and seems to be a strong, though, not
conclusive, indication that there is some increage in the variability.
11.3 - Since % ean take any integer value it is impos\sii‘b]e to con-
struct a table such ag tabie 11.1 for all the values.6f # and some
short cut is needed. As the frequency curve fo:‘rf XY*'is drawn for
larger and larger values of 7, it-is found thatzit becomes more and
more symmetrical in form and approachegthe shape of a normal

The procedlmar opted ngﬁmt of estimating the vari-

-ability in the population $from that in the sample, and then
carrying out a test of gignificanice to determine whether or not

the sample mean, %, gives a good estimate of the population mean,

» 1t is not true that the best estimate of the population standard
deviation, oy, @ill be given by the sample standard deviation,
namely, AN L

\ = w2
§ e A/ » Z(x--7%) :
In fact & better estimate of ¢ jg given by the formula,
7
~\/ 1 .
3 = - — T2
N
where the divisor is now 7 — 1 and not ». Thus there is the relation
' fn—1

st

2
51

betwesn the two quantities, This modification of 8l iﬁlporta,nt and
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Moxt._the distribution of 4.is required if s, is to be tested for

AnR o

signiticance, and it isfound that inlarge saples of 7 from s normal
popilation, the quantity s, is very nearly normally distributed
L 1 . * :
o Mean (s,)= 0’(1 —Zﬁ) » St&ndard deviation of n=Tn

With the help of these quantities the appropriate significance test
. can now be carried out.

Ezample 11.3 The vitamin O content, in milli i-grams per 100 gm.,
of forty specimens of tomato juice was found to be: ‘\’ e’
2 17 18 2 1 o 1 8 oz g
2L 16 2 21 g0 .28 22 17 15 <13
20 24 24 15 3 18 30 17 B)DO@;
1414 18 21 w19 22 ;A 20

It is desired to test whether the variability, opgbandard deviation,
was equal to 3 mg. as in the past or whethfgr an increase in the
variability had taken place. Caleulatiogafrom the data give

£=19-9, wwm&.ﬂﬂﬂg’y,org,in
-—I—TE(x-EP: 14964,1 ‘and 8;=3-8683,
n— N Lo
Now if no increase in varjability hag fékén'piage the quantity s,
in samples of forty sho@'ﬁe normally digtributed with
Medn)(s,) =3(1 —rkq) = 2-98125,
Z /S . 3 .
.E'B”tzisil&a,rd deviation of s, = E=0.335+
Hence the appropriate quantity is- R
ANV 8~ Mean(s,) _ 3868329818 _ 5,645,
oY 8.D. (8;) 03854
Refetence to the tables of the noz_'mal djstﬂbution show-vs that the
chance of ag large or a larger value of s, bemg observed in a sample
from Population whose standsrd deviation is 3, Iia equal to 00041
This is very small indeed and is an indication that the variability
of the vitamin ¢ content in the spemmenﬂ Of_ tomato juice has
114 The tests evolved in chapt.e.r.\ 9 were te&ﬂiﬂ‘;‘f ﬂgniﬁcmm for
the situation in which each individual either dld'-'?r did not possess

¥FP

Iz
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some property. The expected number of successes was compar
with the theoretical number that could be expected if the concepy
of binomial sampling wae a valid one. A further test of agroemeni}
between theory and sampling can often be carried out, taking
account of the properties of the binomial distribution. First noticed
that if a swmple of # iz drawn from a population in which a pro}
portion p of individuals possess some property, and x are found to4
have the property, then S

Mean x=np, Standard deviation of x =jnpg, where g=1 ~4

If instead of the number , the proportion zjn is consi@?iéé, then.:.;
Mean = = Ps Standard deviation of i e J x4 .
n B!

Thus, in repeated sampling, the mean value.of the proportion of -
individuals possessing the character in the €ample is equal to the -
proportion in the population being sampléd} However, the accuracy

of that estimate increases az the nx{m'}}ei' in the sample increases

_since the standard deviation is A/ .%q';’&nd for a congtant value of p

. . ) . . made
this degreasfss as % ;irlxj(rz};%zh m.}ﬁ,agsﬂrlles of experiments are e
the best estimaté 0f p wilhbe a combined one. Suppose that it 18
degired to estimate Wh{t proportion of beads in a large tub are blue
in colour. A small 8e00p s used and produces the following results:

'F‘iljat‘ atternpt 24 beads drawn, 7 blue

7o8econd attempt 28 heads drawn, 10 bloe

AN\ “Third attempt 2] heads drewn, & blue

N Fourth witempd 25 beads drawn, 8 biue

Sincg}hﬁy are four independent attempts or estimates, assuming
t};ab, after each attempt the beads are returned and well mixed
~ :l}éfbre the next batch is selocted, the best estimate would be the
\/ overall proportion of blue beads obtained, that iz
T+104+64-6 28
24728121425 08

The standard deviation of this quantity will be

=TG-

This standard deviation is a measure of the variation that might
be expected amongst the estimates of p if the experiment were

= (2857,
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repeated a large number of times. Provided.» s large this standard
deviation can be used to test for the significance of an observed
proportion. Thus suppose it was desired to test whether the pro-
portion of blue beads in the experiment just described was equal
to {. Then the quantity x/n, where » is the observed number of
blue beads in a sample of #, will be approximately normally dis-
tributed with mean p, or 1, and standard deviation {pg/n), where
¢=1-p. Hence : .

n P 02857025 0816 |
Jlpg/) 00437 T ¢ A
and from the tables of the niormal distribution this is not significat.

11.5 A,-Tle.‘!itfae}BSwI’r()f;=r e et s when. Jf i
test for the equality of the proportions in two popilations, Thus
SaPTEse the incidence of & particular blood gromghin two races is
being investigated. A sample of =, individualsi¥ drawn randomly
from the first population, in which the {proportion possessing
the blood group is P1 (unknown), and ¢fthe », individuals k, are
found to possess the particular, blaed.gionm,- Angther sample, of
7; individuals, is drawn from the §econd population in which a
Proportion p, (also unknown) pdésess the blood group, and %, are -
found to hawve the blood group.’ A test is required to investigate
whether the two populatipn proportions ‘are the same, that is,
whether p, = Py, €VEN éil’gh this common value remains unknown.

It may be shown that if the two samples are drawn from popula-
tions in which théte is a common proportion, p, of individuals
that possess the eharacter, then the quantity

N AR
N ny
will have, in repeated sampling, a mean value of zero and & stan-

ddrd deviation of 1 1 _
)
Jlas,
Whe_re g=1— [
The test criterion to be ealculated will thus be

b b
Hy

T

I-2
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and, provided p, and p, are in fact equal, this quantity will b
- distributed: as a unit normal variable when #, and n, are reason-}
-ably large. To use the test requires, however, a knowledge of p aa:.&
this is not usually available, This implies that some form of esti--
mate must be substituted for p in order to be able to carry out’
the test. Since the test is designed to investigate a common pro-
portion the best estimate of p would be found from pooling the :
samples and taking the overall proporiion. Thus take as an esti-

mate of p the quantity Tyt . _ ~
| Ry + g O\
giving the modified criterion O
ok
1,

J L) (o) )]

Ny + g 7ty + Mg ’Q1
Bromple 11.4 To investigate Wheighga} the proportion of people
having a certain blood group is the same in two populations &
sample of 108 individuals is dmwn from the first population and
a sample of eighty d%%mythﬂgsscond Of these individuals
- twenty-five from the firgt and thirty-five from the second sample
were found to have the(bldod group concerned. Can the proportion
be considered e paldu the two populations from' which these
samples were dra%n .

The data, caa;r ‘be expressed very neatly in tabular form as

follows:
With blood ~ Without blocd
A\Y group group Total
\ Finst sexaple 25 83 108
R\ N\ Second sample 35 16 81

mJ Total 60 129 189

The test criterion above gives

2% -
8 81 0-20062

'\/ [(189) (1‘33) (%g-%é}l-)] B _0-06342f_—

- This must be a two-tailed test since the question is merely designed
to investigate whether the proportions are equal or not. From
 the normal curve tables the area of the left tail beyond —2-932 is

2-032,
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equal to 0-0017 so that the area of both: tails would be equal to.
0-0034. This probability is extremely small.and would seem to
indicate that there is not an equal proportion of persons with that
particular blood group in the two populations; -

Erzample 11.5  An experiment is carried out with willow cuttings
in order to determine whether the number of buds on a cutting
affects the proportion of buds which grow after ‘a certain period.
A number of cuttings with three buds only are kept in water, and
after the given period it is found that twenty-one out of twenty-;
seven possible buds are growing. At the same time a."numbqr\?f
cuttings with six buds are kept and at the end. of the same period
twenty-one out of thirty-six possible buds are growing., On the
basis of the data it is desired to investigato whether the iﬁi‘bportion
is the same in the two cases. L L9
Put into tabular form the data become: ’
PN
Growing @\ﬁ!lg Total =
Buds (3-bud cultings) 2 NGye o 2T
Buds {6-bud cuttings) 2 (N 150 - g6
Povaw .digtaulibragy org:in g3 -
The estimate of 8 common pis %%’;:%, and the test criterion gives ..
21 2LL AR _
27, 36" G104

NI

Sinece the alt.en@ﬁi;'e to equality is that the proportmns mayvary '
either way, thiv'is a two-tailed test, and as such the probability

in the twobails for the unit normal eurve is 2 x 0-053-or 0-106. This o

Probahility shows that such & difference as tha,tobserved between -
the.sdniple proportions is not & very unlikely event and, therefore, "
thexe’ is not, sufficient evidence to doubt the 'hwﬁthﬁis-th@?'-th? o
w0 proportions are the same, R

116 In the last two examples it was necessary tomake use ofan *

estimated Proportion in order to be able to carty. quj; theregmred -
tests. This is often the situation in the 'biilbmfal"WPefOf'Bm?h;l'lg

studied earlier, where it is desired to j_z_weéti__'g.a}tﬁ'ﬁhefrhél’ t]ns
of model is in fact consistent with thea silable data. Consider.
81 Mystration the following example.: "
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Ezample 11.6 In a duck breeding farm it iz believed that the
probability of a duck having a white bib is constant and indepen-
dent of the colour of the bib of any other duck. To test this ninety -
batches of ducks’ eggs were hatched, each batch having five eggs '
in it. 'The number of ducks with white bibs in each batch was noted
and the following results cbtained :

No. with white bibs 4] 1 2 3 4 8 Total
No. of batches 27 35 22 4 2 0 00

First assume that the binomial basis is true and that the pmb-l
ability of a duck having a white bib on hatching is congta.n% from
duck to duck and that the batches are independent: Then the

- total number of ducks hatched is 90x 5, or 45&3 and of these

450 ducks the number hatched with a Whlte'hfb 15
351422 x244x 3+4§2 99,

Hence the proportion of ducks with an\vhlte bib is 99/450 or 0-22.
Then if the probability is remainitg constant the proportions of
oceasions when there are 0, 1, 208,"4 or 5, white bibs on the ducks

in the batches Mygmﬂlh&giyan@y the successive terms of the
binomial expansion. o 78 40 22)5

Expanding this senes\‘,hﬁ terms are
AN

0-2887, 04 72, 02207, 0-0648, 0-0091, 0-000a.

_ Since pinety’ stich sete of five eggs have been obgerved the expected

numb{rs of each of the six types will be
‘~\ 26-0, 366, 207, 58, 08, 01,

:ahld thus a comparison of the cheserved and expected numbers
/ gives the following table:

No. of white bibs - ¢ 1 2 3 4 5 Total

Obgerved no. of batches 27 35 22 4 2 o o0
Expected no. of batches 260 36-8 20:7 58 0-8 01 80

A comparison of the observed and expected frequencies in the
table indicates that there is very good agreement, and suggests

that the hypothesis of a binomial get-up with constant probabilities
adequately describes the data.
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EXERCISES S
11.1 The lengths of a sample of ten nvets from a. Iarge-'batch are
meagured in centimetres, and found to be: : ' '

189, 221, 203, 194, 197, 2-13,'-2—'08’"‘“2—'.05[*?'.'-1'3-95 20

It is desirable that the standard deviation of the lengtha of rivets from

the same batch should not exceed 0- -065 em. Test whether the standa.rd
appears to have been attained.

1.2 In testing projectiles it is desirable to. lumt van& on in thelr
muzzie velocity as much ag possible, in order to prevent variations.in
their performance. Rifteen projectiles were ﬁred and thelr.3= lhuzzle--
velocities in ft./sec. noted as

1365, 1362, 1351, 1358, 1355, 1354 - 1348,
1352, 1353, 1357, 1361, 1347, 1363_,' 136!

In the past the standard deviation of the 1

72 ft./sec. Do the present figures mdlca,t& 1mprovément ‘oh- £}
Va.lue? .

W d‘bl. 3uhbral y.o

113 Raw rubber is treated with, chamma.ls and the
vuleanising process known as curing. Eight specimen

jected to a new process and. their moduh of elas it
measured, The valyes obtaqu are

In past cages the ‘s’ba,nda,rd deviation of the modulus of :

™ oqual to kg /em 2, and ib is belisved that. althongh t.?e new
Procegs ha, roduced a more elastio rubber the sta,nd deviation has
lllcl‘ea,sad st whether this i ia o or not.

11 4 The table below gives the intelligence quo
odlboys Specialising in science. Use the table

st&nda, rd deviation of 1, Q. was equal to 84 or notr
Lo. No. of hoys
1295 134.5 1
124:5-129.5 2
119:5-194.5 8
114-5-119.5 11
109-5-114.5 15

104-5-109.5 16
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1L.5 The heights of sixty Swedish men were obtained and are given
below. Test whether the standsrd deviation of the population from
which they were selected wag equal to 5-7 em.

Height {cm,),
eentral values

151
154
167
160
183
166
169

Height (om.), .
No. of men central values No. of men

172
175
178
181
184
187

9
5
1
2 Q)
190 10O\
/60

B3 00 2 e b e

11.6 One hundred and forty-seven sehoo]childrem.bet‘iveen the ages
of 94 and 10 years were given extra pasteurised milk for four months
. and their change in weight (gain or loss) measazed! A very large group
of schoolchildren of similar age who were téclt: given the milk had a

standard deviation of change in weight, o

2 0z. Test whether those

children given the extra milk had a morewariable gain in weight over
the four months or not. OOV

W

Change of &N Changs of

weight {0z, ) ywrww.d Hﬁ‘aud?ihféﬁ’y-m'g-i’ﬁeight {oz.), No. of
central values chﬂd@r{. central values children

—45 N8 36 15

—36 R 45 13

=2 D s 64 ' 7

~18 XN g3 63 3

-9 N 14 . TR 3

07 14 . 81 1

AN 23 90 1

(A8 17 Total 147

“\aT 14

117 \The diameters of ball-bearings are known to be normally dis.

W

11.8

Jtibuted, with a mean of 8-92 mm. A gauge is set at 10-00 mm, and it

und that seven out of ninety-three ball-bearings fail to pass through
the gauge (i.e. have a diameter greater than 10-00 mmw, ). Estimate the
standard deviation of the diamster of the ball-bearings ?

_An experiment is carried out on the crossing of two kinds of sweet
pea. The varieties may be digtinguished by the form of their seeds, one
being round and the other wrinkled. Seed pods from the crossings are
collected, and from thirty-five pods each containing eight seeds the
following numbers of smooth seeds are counted :

1,2,1,0,8,2,2 1, 0,1,223,1,4,0, 2,2,
3,2,4,2,8,1,4, 2, 3,1,4, 3,2, 1,324
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Use this information to test whether the proportion. of smooth seeds in
the population is equal to 1. :

119 A penny is tossed 80 times and on 45 occasions gives heads.
Thus a proportion 0-5625 of tossings gives heads whereas for a true coin
this proportion should be 0-5. Test whether or not the coin could be
considered to be an unbiased penny.

11.10 A die is tossed 720 times and on 143 of these tossings a six is
obtained, giving a proportion 0-1986 of sixes, instead of the 0-1667
expected with an unbiased die. Carry out a test to see whether the die
is unbiased or not. '

ILI1 Tt is desired to estimate the proportion of fuses mablé_$o
withstand a certain current, Four independent random sa.mple:{ drawn
from a large number of fuses give the following results: N

N

First sample 27 fuses drawn, 7 blow with eurmn:i; »

Second semple 41 fuses drawn, 5 blow with qurrent

Third sample 23 fuses drawn, 4 blow with ourrent

Fourth sample 32 fuses drawn, 5 blow wiQL.current«
N

(a) Estimate the overall proportion of fusegthat would not withstand
the current applied. Give the approximaté'sténdard deviation of this
estimate. ' Nl brary.ore.in

(b) Approximately how ]argev?ﬂrgﬁfcf 'Eﬂgl;sgﬁl gaml%]e be if the stan-
dard deviation as found in (a) is £6 e less than 0017

(¢) Can you think of a situation in which it would be desirable to
know the sample size as in {b{?

11.12 To make up six%xguiji]s for a special training course a saxa?ple
of thirty pupils is seledted from school 4 with o further sample of thirty
pupils from scheol By Mt the end of the course there is an examination
which twenty-fourof the pupils from school A4 pass, but only seventeen
of thoge from séheol B. Does this indicate a real difference in the pass

rate for pupi{afﬁ'om the two schools?
N\

11.13 A:’J:a,rge number of patients who have not colds are available at
the_ guﬁi\ét of an experiment. Two groups of s;'xty are selected and thoge
in‘thg first group are given & cold preventative. After three months it
is foind that whereas fifteen out of the sixty treated have had a cold,
twenty of those untreated have had a eold. Do these figures demon-
strate that the preventative gives any immunity from colds?

11.14 Four sets, each consisting of two dice, are thrown. A success is
defined as meaning that the pips on a pair of dice add up to five. In
531 repetitions of the experiment the numbers of successes among the
~ four sets were distributed as follows: .

' 2 3 4 Total

No. of suocesses 0 1
1 631

Frequency <~ 326 171 31 2
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By caicula,ﬁng theoretical frequencies for the above table and com-
paring them with the frequenecies that have been observed, test whether
the dice could bhe considered unbiased or not,

11.15 A4 asserts that the probability of throwing & total of nine with
two ordinary dice iz 1/I1 sinee there are eleven possible outcomes,
namely totals of 2, 3, ..., 12, and only one is favourable. B asserts that
the probability is 1/9 since there are 62 or 36 possible outcomes with
two dice and four, namely 6:3, 5:4, 3:6, 4:5 give favourable outcomes,

If the statements of 4 and B are to be verified by tossing a pair of
dice » times how large do You consider » should be, assuming that the
5% significance lovel ig to be used ? O\

11.16 An investigation info the performance of two maghihes in a
factory manufacturing large numbers of the same prodict gives the
following results: e\

) No. of articles  Nofofarticles

examined { defective
Machine 4 750 NP
Machine B N

Apply a statistical test in order to ﬁ.nd\ out whether there is any
significant difference in the performante of the two machines as
measured by the number of defectiye articles produced. What action
wonld you recommend, ifhe fimpsegnaeanad was considering replacing
4, which is old, by another machine of type B which is, however,
quite costly to instal? ~
11.17 Ten seeds gre sfglebted from a large pile and Placed on damp
blotting paper. The @triber of seeds that germinate is noted. The
whole procedure is repedted 75 times and the following resuits obtained

No. of seeds germinhting () 0 1 g g 4 5  Over5 ‘Total
No. of triais with'%' seeds 5 I6. 20 18 1o 6 —_ 5
germinating £, .

A\
By fitting an appropriate binomial distribution see whether it i
reasQnable to assume that each seed has the same independent chance
of germinating. '
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FURTHER FORMS OF AVERAGE

12.1 In the previous chapters tests have been devised and used
to imvestigate whether or not some statement is correct. To this
end a test criterion has been caleulated from the sample data that
are available for the investigation. Usually this eriterion is some/
single figure and the likelihood or otherwise of that value ocourring
is then judged. This makes it all the more important that thet (est
possible single figure is in fact being used and that the ﬁgure does
convey its correct meamng For example, statementi #re fro-
quently made involving some form of rate, that is, depending on
two quantities. Such a statement might be that raffic is going
along some road at 200 vehicles an hour, or thaiqthe birth-rate for
Hullin 1952 was sixteen per thousand of population, or that the coast
of Kent is receding in places at the rate of\6'in. per year. Usually
the meaning of the rate is seifleze!;ﬁemﬁ.ﬂéry yeogided that both
units have heen given. For example, if 200 vehicles pass a designated
point on a road within an hour, the rate of flow ab that point at
that particular time is 200 vehmles an hour. A rate so expressed
does not imply that the cmmt has been carried out over an exact
hour. Thus fifty vehicl 15 min. or 300 vehicles in 90 min, are
both equivalent to agtate of 200 vehicles passing per hour. Again,
if for some particuldr town the ratio -

7~ Number of babies born in yoar X
Population of town in thousands for year X

is equal 0 sixteen, this would imply a birth rate of sixteen per
thotsand. Notice that by expressing these statements as o rate
the &ttual numbers are not given and there might be a population
of 100,000 with 1,600 births, or a population of 1,000 with sixteen
births, or any other appropriate combination of numbers. But by
expressing the rate in this manner it is possible to reduce a large
series of non-comparahle figures such as total births in a large
numbér of towns into a. series of birth-rates which enable the
towns to be compared on a common basis. To be told that two
towns have 1,600 and 4,000 births, respectively, in 1956 does not
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give very much information unless at the same time the populations
of the towns are given. If the populations are given ag 100,000
and 500,000, respectively, the two birth-rates, sixteen and eight per
thousand, can be validly compared.

12.2  The reduction of quantities to some common bagis not only
allows comparisons to be made, but often enables various quanti-
ties to be combined to form an overall value. To illustrate this,
suppose that a railway company desires to estimate the numbet of
persons travelling on one of its trains over some stated, period of
time. Ifthe company merely desires to know the numbgrginvolved
the question has a very simple answer, but it is quite likely that
the company wishes to estimate the revenue pbﬁaﬁled over the
period from the train Passengers, and is therefgre more interested
in the fares paid. Now if a first-clags Passenger pays a fare of I unit
then 2 second-class passenger pays a fafe 'of 2 unit and children
pay 3 or § umits according to whetherthey travel first or second-
class. Finally, infants in arms travél free of charge in either clags.
Instead, then, of merely counting{the overall passengers the count
is subdivided into six types a®¥iven in the first three columns of
table 12.1. The t&ﬁiﬁi&?ﬁ%ggéggers carried is the sum of
column, (3) or 473. The fars factor in column (4) takes the first-class
fare as the unit. Th:zﬁ%he equivalent number of first-class fares
for any particular f@e of passenger is the product of the numbers
i columns (3) &nd (4) and is given in column (5). The total of
column (5) givy’282-5 as the total equivalent number of first-class
Passengers'on the train. Thus the average fare paid per passenger

is \..‘ '
: / 282,
L - v‘—f,?—; =0-597 of a first-clags fare.

™

¥y

AN

{ m form of caleulation enables a fair comparison to be made of
the revenus capacity of two lines. Thus another train might carry
521 passengers in the same period but itg equivalent first-class fare
Passengers might be only 261, due to a large number of children.
Hence, although more space is required to carry the passengers the
revenue in fares is Jess. This example shows how & mere com-
Parison of numbers may be misleading. In the example given the
equivalent first-class fare passengers were 282-5 and 261, respec-
tively, showing that the first train is the better revenue producer,
even though it carries fower Passengers. '
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Table 121 Railway paséengers
(1) @ @ @ (5)

Paasenger No. of Fare Equivalent

Clasa type pessengers wnite - passengery
1 Adults 45 1 45
Children .o ! 35
. Infants 2 o 0
I Aduilts ©oB12 3 208
™ Children .78 3 26
Infants 29 0 o
Total 478 — 282-5

o\
12.3 This concept of equivalent units may be extended toother
fields. Some years ago Dr E. (. Snow, who was consxdemng the
consumption of goods by various members of the oommumty,
realised that the consumption of goods and services-varied some-
what with the person’s age, and ealculated that\if\the total con-
sumiption of a person aged 30 was unity the equivalent total con-
sutuption for other age-groups was given, b}s the figures in table

Table 12.2. Egmmlent omwumptwns by age

Age o014 1s-zevvudBreUliregpy oTEie  ap
Ecuivalent 0-19 081 09 = 0468 032 0-06
ocongumption - o o

Table 12.3. Po@l&um by age and consumption

Pdpulation Equi- Consumption units
[thousands) valent {thousands)

7 _— = v con- I A 5

Age 71081 1951  sumption 1931 1951
0-14 (\1,174 . 11,388 019 2,123 2,164
15-295\\“ 11,680 10,395 081 0,461 - 8420
30-44 9,801 11,308 095 9,396 10,740
45569 7,979 9576 068 - . 5426 6,512
PNGO-T4 4,357 6,126 032 1,304 1,960
N5 957 1,766 0-06 57 106
Total 46,038 50,556 — 27,857 29,902

12.2, Thus the consumption of & child is smaller than that of a
young adult which is in turn larger than that of a more elderly
person. Now the population of Great Britain was 46,038,000 in
1931 and 50,558,000 in 1951, an increase of 9:8 %, in the twenty
years. If, however, the popul&tlon is divided according to age ab
each of the dates the equivalent consumption can be obtained at
the different times as in table 12.3. By comparing the two totals
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- of consumption wnits it is found that there was an inerease of 7 3 9%,
not 9-8 9, between the two dates. A study of the population by
ages reveals that this difference is due to there being very different
rates of increase for the various age-groups ranging from a decrease
of 11 %, at ages 15-29 to an increase of 85 % over age 75. Thus the
pattern of consumption hag changed enormously over the period
due to the changed composition of the population.

124 The above example is a particular illustration of the im-
portance of compound units, which often have to be used\to give
a correct interpretation to complicated patterns of events. For
example, in section 12.2 the comparison of traffc pn:\one railway
train with that on another by means of the equivalent first-class
Passengers is not really sufficient. On one tra,gn:&]l the passengers
may get on at one station and alight at the(tiext, whereas on the
other fewer passengers are carriod but they may make far longer
journeys. What therefore is required j¥/8 measure taking aceount
not merely of the number of passeugers carried, but the number
of miles that each Passenger travals. To do this g compound unit
called ‘passenger miles’ is used ) Suppose the following details are
given v Alpeseion by sngs milos

’ . 1 passenger travelled 19 miles

1 plsgenger travelled 8 miles
2'passongers travelled & mifes each

Then the number\df pimsenger miles travelled is
28+19+8+2x5=65,
This gives &}tﬁﬁeh more reasonable basis for comparison of the
economioDof the two trains, so that table 12.1 would be recal-
culated hsing Passenger miles instead of Passengers in column
(3)..Then the final comparison of traing would be in terms of
squivalent passenger miles and would take account of differences
{“between adults and children, between classes of travel, and between
distances actually travelled.

Such compound units are met with in many fields. In mechanics
use is made of the unit foot-pounds. To raise a 10 1b, weight through
5 ft. requires the same number of foot-pounds of energy as to raise
a 5 Ib. weight through 10 ft., namely 50 ft.-1b, (the product of the
weight and distance) in either cage. Tn industry the measure of
work is often in terms of man-hours so that & job which takes ten
men working 4 hr. each is equivalent in man-hours to a job which
requires five men working 8 hr, each.
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12.5 The example of the two railway traing shows how a com-
parison of the numbers of passengers travelling on the two lines
can be misleading if the revenue-producing capacity of the two
lines is to be compared. T'o do this the numbers of Pagsengers in
various classes are ‘weighted’ to produce an artificial figure that
can be used for coniparisons. The ‘weights’ in this case are pro-
portional to the revenue-producing capacity of each type of
Ppassenger. The average fare paid per passenger is then referred to
as & weighted mean. The most common example of a weighted mean {
in practice is the construction of index numbers. O\
"N

Table 12.4. Relative prices in fwo years A

Food " Rent . Clothing - Fyel
Year 4 100 100 100 .‘100
Year B 117 95- o4 106
\/ '

A simplified version of the cost-of-living itideéx could be based
on the four items shown in table 12.4. The eost of these items are
shown for the two years 4 and B. The first, year 4, has been
taken as “base year’ and the prices phithati b0 whilstithe prices for
year B have been found in relatigh to year 4. Thus suppose that
in year A the price of coal wag 93s. per ton, whilst in year B the
Price had risen to 99s. piap?&n', then the price in year B relative
to 2 price of 100s. in yqar\ﬁ_wﬂl be 1'009; »_ 106, and similarly for
the other items. Next it is required to combine the four items to
produce a singlépverall figure representing the cost of living in
year B. O iohsly it is not always legitimate to take the plain
average gfji:he four items, that is to take

O $(117+ 95+ 94+ 106) = 103,
because it may be that people spend a very large pro:portion of
their income on food and very little on fuel.” An alteration of 1%,
In the cost of food then hag a very much larger effect on the overall
cost-of-living than an alteration of 1% in thei cost of fuel, To
overcome this objection each item is given a vffelght and the most
suitable set of weights is the proportion of income that pe?ple

‘spend on those items. Thus suppose that in year A the proportions

were .
Food i, Rent},  Clothing4, - Fuel3.
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Then instead of taking the simple average of the four priees
year B, a weighted average is taken, namely: -

X 11743 95+ Ex 94 4L x 106

= 103-8.
P

This produces a higher index number than the simple average. The
Increase is not surprising since previously every item had s weight
of %, whereas food has now g higher weight and it has mereaged

into a more formal notation by calling the division_ of?}noney
amongst the items the weights. If w, is the weight attached to
food and Py the price in year B, and so on for £he other com-
modities, then the index of Prices in year B ig &0

1P WaPa+ Wy 0y + wy pe

LS

the resultant index umb l,gg}iéggﬁered. For example, doubling

_ww . dbrau

each weight gives

2w, p, + 2wy py -+ 2u5p, 2’“’4194___ WPy Wa Dyt py + WPy
2wy + 2w, -l-\%vgg-i— 2w, ' 0y + Wy + g+, ’
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will it cost to buy those same necessities in year B? In year 4 the
distribution of the outlay is 1 on food, § on rent, $ on clothing and

s on fuel. In year B the costs of these four items are 1-17, 0-95,
0-94 and 1-06, respectively, relative to a cost of 1 in year A, o that
to purchase the same quantities of these goods as in year A4,
will require EX 11743 95+} x 4941 x 106 =103-8

units of money, as compared with 100 in year A.

Table 12.5. Effect of various weights 2\
. £ N 3
Weights ' >
, N S . \ \
Food Reat  Clothing  Fuel Index"
Set I 3 3 3 3 {1080
Set TT 6 2 2 2 NON1077
Set TIX 5 1 1 5 1087
Bet IV 1 ] 5 I 973
Set V 4 2 4 9 1038
Set VI 2 4 PRIV 100-2

Q"

As the weights required aré“‘éﬁlﬁ%ﬁ%ﬁ‘é‘ thers 5 no need to
use fractional weights and an eqnivalent set of whole numbers
can be used as in table 12.5.. Iti*the examples above the weights
could be 4, 2, 4, 2, just ag.well as §, §, 1, 3. Usually the general
Pattern of the weights i i{leér,' although it may sometimes be very
difficult to give precide values to the actual weights. Small varia-
tions in the weight{d6 not produce very big variations in the final -
index, so that andiie aceuracy is unnecessary. This is illustrated
in table 12.6,(which gives two sebs of weights, the second being an
approximafion to the first. The différence between the resulting
index nyﬁbers is of the order of 0-1, which is very small in com-
PavitonAvith the numerical magnitude of the quantities involved.
Thu¥ifin practice the weights involve rather large or inoonvenie:nt
humbers, a simpler set of values, in approximately the same ratio,
¢an be used without any serious loss of accuracy.

Table 12.6. Bffect of approwimate weights
o S Y i

Food - . Re'lt ing -
Prics year B u7 9% 106. -~
Weights (i) 49 - 22 wneo :gg:g
Weights {ii) IS TR 1

I2
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12.7 The construction of any form of index number is often the
result of & very comiplex procedure, as a large number of factors
have to be considered and their relative importance assessed, For
example, if an index is to be constructed to show the variations
in the cost of living there will be difficulties in deciding which items
should be included and which excluded. It would be impossible
to include every single item purchased and used by the ‘average
person’, a term which is itself difficult to define. The items selectod
should, therefore, be representative of the tastes and habifs or
requirements of the class of person concerned, namely the{general
publie. The particular items chosen should be ea,sﬂy\ jdentified
and wnlikely to vary a,pprecla,b]y in quality. Thus, the' bare item

‘meat” would be too vague for use in the index a,nd a'more definite
description, such as ‘shoulder of New Zealanddamb’ , I8 necessary.
Clearly the more items that are included, th&.more nearly perfoct
will the index become, since price-changé®in a small selection of
items may not be representative of th} whole field of consumer
prices. A different selection of iteths*could then give a different
index. With a larger number of\Rems more representation is ob-
tained and any errera. ébmmiﬁbedymldl have a tendency to cancel
one another out. On the other hand, the more items that are.in-
cluded the greater are the expenses and difficulties in compiling
the index, and the]l ngér the delay in publishing the results after
the information h‘a,%een collected.

There are oceasions when an article is in short supply or is even
unobtainable for some reason. Thus certain fruits, such as bananas,
vanished, ﬁ«n}m England during the 198945 war. Under such
clrcum@aﬁces the article would be only rarely bought and hence
should be eliminated from the index. As this elimination may

.mvblve a great deal of work and considerable recaleulation, a
pominal price, based on the prices of comparable articles, is usually
wnserted if the restriction is believed to be merely of a temporary
nature, and the index continued as before. Should, however, it
become necessary to drop an item permanently a new index must
be calculated, and it is usual to ealculate both the old and the new
index for the same year and then to use a factor applied to the new
series to ensure that at the cross-over year the two indices agree.
Thus in the Cost-of-Living Index, now re-named the Interim Index
of Retail Prices, revisions of the pattern of expenditure have taken
place since the original index was introduced in 1904.
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A new index was started in January 1956 and the weights were
based on consumption in 1953-4. Table 12.7 shows the calenlation
for two dates in 1956 and the resulting index that is produced.
If the index is linked to the previous 1947 index, which stood at
153 on 17 January 1956, by equating the two indices at that date,
it is found that the May 1956 index would be 153 x —1%2(;—5, or 157,
taking 17 June 1947 as the original base of 100 units. To collect
the prices in each of the ten groups of items the Ministry of Labour
has laid down a specimen schedule of expenditure, and on any,
date the prices of these commodities can be obtained and linked
to the price (taken as 100) on the base date. This index hag great
practical implications, as negotiations for increases in wage-rates
are often baged on its value at a particular time. ¢ )

g\

Table 12.7. 1956 indes of reiail gides

Prices . '.'\\" Pricea
N '.\‘ ——
17 Jan. 16 May D N\ 17 Jan. 15 May
Itern - Weight 1956  1956' Item’  Weight 1956 1956

Food 350 100 - H042vweeliimplibrarigerg.ined 1004
Drink 71 100 1007 ~J¥ensport 68 100 1019
Tobaceo 80 100  105-3 %\ Miscellaneous 59 100 1018
Housing §7 100 1027 = goods .
Fual 55 100 {980 Services - 58  100. 1021 .
Hougehold 66 100 ,{ 1012 Alitems 1000 100 1025
goods \\_

N

128 The use qf\iﬁtiex numbers is often valuable m comparing
two items forwhich a direct comparison would be mvahd- owing
to some Q&eﬂying differences not direotly conce.rned with tha
comparigdn"that it is desired to ma,_ke. Thus the mt.iex 0?‘ retail
Priceg-ould enable costs of living to be &Sﬂeﬂalfled in two
dmht towns, whereas a straight comparisen of typical }::udgeta
in‘the two towns might show differences that were in' reality dl.le
to &, varying pattern of expenditure rather than to dJﬁ'erenee;J in
prices. This concept and use of _sta,ndardjsatlor-l is of great v Lue
in vital statistics, which is the branoh of statistios concerned with
births, marriages and deaths. . '

The methodieadopted can be illugtrated by comparing the d;ea.t].l-
.Tate in two towns A and B. In town A there were 198 deaths in.
1956 and the population of the town was 14,180. In town B there

were 272 deaths in 1056 and the populstion was 19,320. Town B
' . o 12-2
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~ has more deaths than town 4 and might be said at fitst glance to
be less healthy. This, however, is an invalid comparison, because
town B had many more inhabitants, and, hence, even if it was just
as healthy to live in as town A4, & larger number of deaths would
be expected. Thus an improvement on this procedure is to find
the expected number of deaths in town B if its population were
the same as that of town A. A still better and more common
method is to reduce the population of each town proportionately
to 1000, as this enables a number of different towns to be compared

simultaneously. Thus
' 198

Town 4 14,180 1000 =14-0 deaths per thoufsa,nd,

N
L A\

N,
7 %4
S

Town B i% x 1000 =14-1 deaths pel\ thbusacnd.
Town B still has the higher deaths but\only by a very small
margin and it would probably stili be 1‘?{1‘1 0 agsume immediately
that 4 was the healthier town to reside in. This rate for deaths
can vary enormously on account of different age and sex composi-
tions in the two tawpg. gLt mﬂ]l,)lf,n@gmtha,t a far Jarger proportion
of men over 60 die in any ydar than, say, men between the ages
of 20 and 30. Hence if one town is composed almost entirely of
the over 60’s and the ot]ger of the 20’s then the death-rates will be
very different fromt éach other. Thus a simple comparison of the
death-rates between the two towns is a very inexact procedure, and
to overcome this"a more general method is used, involving the
standardisatien of the death-rates against a standard population.

5%" Table 12.8. Death rates by age and sex

Deaths per 1000 persons in one year
mwJ . A

1
Town A Town B

—h N Is A

(years) Males Females Males Fernales
0-10 72 58 74 5-6
10-30 2.1 2:0 22 1-8
30-50 B-0 4.4 4-8 4-1
50=70 23-2 196 26-7 21-3
Over T0 101-4 89-3 96-3 92-4

The system adopted is not to work out for each town the rate
of deaths per 1000 population, but to divide the population up
by age and sex, and to find the deaths per 1000 population for
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.each of these age-groups. The results are shown in table 12.8 for .
the two towns 4 and B. It will be noticed how the rate varies
enormously with age but not so greatly with sex. The next step
is to combine the rates, subdivided by sex and age, into a single
eomparable figure. One method would be to take the death-rates
for town 4 and weight them with the population of town 4 in
the same age groups. This would produce the deaths per 1000
persons in town 4. The procedure could now be repeated, using
the death rates from town B but the same series of weights, namely
the population of town A, so as to ensure that the two towns are
being compared on an equal footing. However, if a number ©f,
towns were to be compared the choice of a basic town would be &
difficulty. If one town is used throughout subsequent coraparisons
between two other towns, it may mean using & ba,sm which is in
reality applicable to neither. For this reason a very emmon basis
is that of the overall population of the country\In this example
the population of England and Wales in- 1955'will be used. This
population is shown in table 12.9, together vﬁth the calculation of
expected deaths in the standard. populatlon assuming first the
death-rates by age and sex f&%ﬁrﬂ'"ﬁﬂﬁ' weounidly those for
town B. From the calculations the :overall- rumber of deaths
expected in the standard popul’atmn would be:

641,322 if rat[ea\for town A éxpenenced
665,244 J;E \a}es for town B expenenced

Table 1&9 Oalculatwn of mmmssed deatk-mtea

O o T
.s'\ —A - A\ ot {_ G ¥ .
N ' Deaths Deaths - Deaths  Deaths
Age")  Population on Joon Popul&hon on :
’Sfa}lf) {thousands) rates 4 rates B (téloqmda) rates A  rates B
C10 3570 26,704 26418 .f?,.ggg }g,g;g '
10-30 5,790 12,159 13738 . L s
30-50 6,370 81,850 30,676 | Jese 267
5070 4,410 - 102,312 117,747 O L one
Over 70 1,250 128,750 124,125 : s s

j : 640
Total = 21,300 208,775 _,.311,8{}4_-‘. 342,547  353,6

Converting these into death raates" )
before gives 144 deaths per tho
per thousand for town B. Henee

far town A, and 150 desths
'atyﬂl has the higher death-
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rate, but-by a rather bigger margin than in the crude death-rate,
showing that the age and sex structure of the two towns must in
fact be different.

129 Two other interesting facts can be seen from a study of
table 12.9 togetherwith the kmnowledge that the standard population
used is that of England and Wales at 30 June 1955, First of all
above the age of 30 there are more females than males in each
age-group. This is due to the lower mortality rates that femaleshave
at each age throughout life and gives rise to a prepondeganide of
females at the higher ages. This occurs despite the fa\éi}\t\hat ab
birth there are more boys than girls, a majority which slowly
disappears and becomes a deficiency as the mottality-rates at
higher ages begin to have their effect, R4
Secondly it will be seen that the number ofmiales aged 10-30 is
less than the number of males aged 30-5Q, 'a’ matter of 5,790,000
against 6,370,000, A very similar sit}@’tﬁm obtains for females,
where the difference is even larger..,T,his is, at first gight, a sur-
prising fact, since both periods gqv‘m" twenty years, and as there
would be some \ﬁl\%a\ﬂ;la%rgmgrbpg{s@age through the age-group
10-30, it would be expected that the age-group 30-50 would have
fewer and not more peopléein it. This must mean that in twenty
years’ time the group 30250 will have fewer men and women in it
than in 1955. Th, qeason for this peculiar feature of the age
structure of the p(%'lﬂation is to be found in the distribution of
the number of bitths over the years between the two wars. During
this period a ngh birth-rate was followed by a low birth-rate in
the late 1930y and early 1930’s; the birth-rate recovered by the
end of\the"i 93945 war. Hence there was 3, trough in the distribution
of births over time, reflected in the low numbers in the age-group
1680 years.

12.10 Standardised rates are part of the statistician’s equipment
designed to enable him to reason correctly and thus extract the
~ correct conclusions from a given set of data, Everyone is familiar
with the person who steadfastly .maintains that statistics will
prove anything. It is, however, the misuse of statistical material
that has encouraged such an unenlightened opinion. To illustrate
this consider two examples taken from newspapers. The first
Oceurred when a Member of Parliament was complaining of a lack
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of urgency in the production of a eertain type of aireraft, and went.
on to criticise the delay in bringing these aireraft into general
service. In reply he wasg told that his fears were groundless, and
that there were no grounds for complaint as-the production of the
aircraft had risen by 4009, during the previous year. This may
seem & gratifying answer but it breaks the rulé laid down earlier
in this book, that if the totals on which percentages are based are

© . not stated, & misleading and unwarranted accuracy may be given

to the figures. When the actual figures were later available it was
found that one aircraft was produced: in the first year and.four
aireraft in the second, which rather demolishes the aura set upby,
the reply. - : o o~
A second example is extracted from- a letter appearing in a
newspaper, which read ‘It has heen established that tHeminimum
wage for reasonable living today is £6 per week. Workers in the
X industry are receiving an average wage of £8)\1s. 4d. a week.
Thus there is no suggestion that the wages Paid are inadequate
to maintain a reasonable standard of hvmg’ This is 2 fallacious
use of the word average. Although ggriét{l]ybcjjmct_ iti-rr]na,y conqeal
very large differences in the I%Evﬁhera%lfohlgf *iie Swirkers, even
though the average may be equalsto £8. 1. 4d. Three.'g_roups.'of
workers can be visualised. In“group A all the workers receive
£8. 1s. 4d. a week exactly 56 bhat no matter what form of average -
is used the mean or ave{age’value is £8. 13. 4d. and no workers fall
below the £6 level. XIn“group B there are mine employees who
receive wages of. 54 Ts, 4., £5. ls. 4d._, £6. 1s. 4d. and 80 on up
to £12. 1s. 4d. a'week. Average wage is £8. Ls. 4. but two of the
employees ag)below the £6 level. In group € there are ten men,
the Pmprit;fr and his nine workers. Hach Wf_)ﬂfer recelves
£5. 125.%4. a weck whilst the proprietor'_recei_ves,. with bonuses,
£3Q'_'\Os?’ 10d., thus giving an average ﬁgu_reof £8. lg. 4d. even
thogh the wages of 909, of the worlkers are b61.0W ﬁhe_’ £6 figure.
Notice that there is nothing wrong with the arithmetie; . ea?,ch_
‘ase a simple arithmetic mean is being employed, but the Omlf!ﬁfll‘;"llg
of any measure of the spread about the average makes it Impossibic
to judge how well-off the employees maﬂy are. : Oi: course even mor(ia'
~ misleading statements can arise by_._not_spec;fylng Wh‘?‘t .fon; ot .
average is in fact being used. Supp’pse;:for example, 1':he wai;hzl:s
in group (* abhove decide that it is tlme’eo draw a,tt-e'ntlon h;g tha:;
phght To this end they bring Outadocument stating + _
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average wage is only £5. 12s. 6d. a week, which is true provided
that the averago being used is either the median or the mode and
not the arithmetic mean. Thus the two sides in an argument can
produce different averages to suit their own ideas and aspirations, -
but little can be decided unless it is known which form of averages
each side is in fact utilising,

12.11  Ifalarge set of data is to be summarised by a single value,
or even just a few values, then it is essential that this valge he
well chosen if the result is not to be very misleading. The tuiles to
follow are: O

(#) bear in mind the properties of the statistical measurss used;

(b) make comparisons only between groups \'t};"gat are strietly
comparable, )

To illustrate the first rule consider the statement, ‘Tn Blankshire
over half the children are under the average weight for their age,
which shows the need for some exteg{taeasures for their health.’
Now from earlier discussions the expected shape of the distribu-
tions of weight of children will bebell-shaped and thus half of the
-children should %@_m‘gﬂ}‘p&%ﬁ%@yg_ﬁeights that are below the
average. The fluctuations in\weight are in fact quite large for
children of any given ageand may eagily have a standard deviation
of some 12 1b. or more‘é,bo_ut the average, but the fact that this is
the average leads,one to expect that half the children are below
this value, henge\there is nothing very remarkable in the state-
ment. The cotinty could equally well be proud of the fact that

nearly half af'its children are above the average weight for their
age. T}Eetfa.ﬁlt lies in giving averages without any idication as to
how miyich spread on either side of it could be considered normal.
. T illustrate the second rule consider the following figures giving
“the numbers of births in two towns for a particular year
Town X Populstion 38,400  Births 576
Town ¥ Population 52,307 Birthe 790
If these numbers of births are reduced to births per thousand of
population it will be found that for town X the rate is 15 and for
town Y itis 15-1 per thousand. These rates are very nearly equal, but
the two towns may in fact be very different if, for example, there
are different numbers of young married couples in the two towns.
Any comparison must therefore take this into aceount before
Producing an overall rate for the two towns.
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12.12  Some further exampleswill llustrate other comrmon pitfalls,
First consider a town which has an epidemic of diphtheria and
suppose it is found that more children who have been inoculated
die of diphtheria than children who have never been inoculated.
From this it is but a small step to the assertion that inoculation
for diphtheria is of little or no use. The argument here is based on
the number of deaths alone, but this cannot be sufficient evidence -
since the total number of children involved in the two categories,
inoculated and not inoculated, must have some bearing on the ,
result. The hypothetical figures in table 12.10 give the number of
children who have been inoculated and the number who have Doty
the number of deaths in each of the two groups, and the fat»a;htyrate
per thousand children in each group It W1]1 bé seen tha’c although

Table 12.10. Deaihs in dapkmema epidembc”
Inonu]ai_:ed_\_ ) Unmoculated

Ko. of children -~ 24000 /N 5000
No. of deaths 3 \’ o 5
Fatality rate per 1000 -~ -0 33 5 1 i)

numerically more children Wh@, Vh&ggamgpqg{quglgqﬁed die, the
fatality rate for inoculated cthdmﬁ ig in faci_i only one-third of that
for uninoculated, due to the versimuch larger nu_mber of moculated
children. This fallacy is fairly easily spotted,-but & more difficult
type of situation is illustéabed in table 12.11 which gives the cost-
price and profit made Bﬁthe gales of ﬁwo c]asses of goods for two
years. In each year'the percentage proﬁt is the same for the two
classes of goods Between the two yeats there has been an enor-
- mous change-if the relative amount of the turnover m ‘thé two
classes of g})ﬁds and also a chacnge in the Ie_wel of proﬁt A plam
Summablon of the two years Jeads to the eonelumon that good.s of
c]aa-‘i B"y1e1d a higher rate of profit tha.n do goods of-class 4. This |
is, however a misleading conclusion. At y partlcular time the
two classes of goods yield the samie rate of profit. The overall
profit is a mixture of d_lﬁ'erent levels of proﬁt for 'bhe f.wo yoars,

Table 12.11. Costs: “”d i‘”"’ﬁ’s
e e Proflt (%)

Class A

A i
Cost: (£) Pruﬁt{fu_}_

: e _.10. 10
1955 400 %) R g B
1958 1000 5O g .

SR LI
- Total 1400 80 - e T
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and they are mixed in different proportions for the two classes 4
and B. If the basic cost of the goods in the two years had remained
unchanged no such conelusion would have arisen. This example
illustrates the care that needs to be taken when there are in fact
three variables present, namely, class of goods, price, and year.
By taking a simple average over two of the variables it is tacitly
agsumed that the third has an equal effect on the other two and
this may not be the ease. In the particular example here the nly
safe way would be to calculate the rates for each year separaely.

2 ." \s

12.13 TIn making use of rates o illustrate how quantities associ-
ated with a particular event are varying, account lgaé.to be taken
of the underlying numbers that are exposed to the?isk of the event
oceurring, In the ease of the diphtheria epidemio it was nof only
the deaths that mattered, it was also the number of children who
‘were exposed to the risk of dying from_the"disease. This point is
often inadvertently overlooked with‘céri‘espondingly unrealistic
results. The position may not be quife)as simple as it appears from
table 12.10, in that inoculation,&rj’d the catching of diphtheria is
not a static but a oo Hﬁ??&mmd even if the figures in the
table are correct, at what poibof time are they correct? Tt may be
at a date before the begiiini g of the epidemic, or at the end of
the epidemic, or at sOnte intermediate date. The answer would
not be readily avail#le because it would be necessary to take into
account the actu@ldate of inoculation. Ignoring the deaths for
the moment. gnd assuming that there was no migration, the whole
group consifbs of 29,000 children. Imagine that the whole course
of the epideinic took place in 1956; then if all the inoculations took
Place gn 1 January 1956, table 12.10 would be a true representation
of the course of the disease over the year. Alternatively imagine
<hat all inoculations took place on 1 April 1956 (it is assumed that
cover is given by an inoculation immediately, which is not frue but
can he allowed for by a slight adjustment of dates). There are now
three categories of children to be considered:
(@) 5,000 children uninoculated throughout 1956,
(6} 24,000 children uninoculated from 1 Jahuary to 31 March
1956,
{¢} 24,000 children inoculated from 1 Aprilto 31 December 1956,
Thus the eight deaths amongst the inoculated come under
category (c) whilst the five deaths from the wninoeulated eome
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from amongst categories () and (b). Now tlie 24,600 children who
are inoculated are only exposed to the discase- (as ioculated:
children) for nine months, and this is equivalent to three-quarters
of that number of children, or 18,000 being exposed for a full year,
Similarly in the case of (b) the 24,000 .who 'are exposed, in an
uninoculated state, for.3 months before - Inoculation would be
equivalent to 6,000 children being exposed for the whole year. Thus
- the three categories when summarised will eontribute . <. ..
{2} 5,000 child-years of exposure, uninoculated.’. .. -~ . - -
(b) 6,000 child-years of exposure, uninoculated.. - .7
(¢) 18,000 child-years of exposure, inoculated: 1 - .~ O
The sum of the three quantities iy 29,000 chjld;en-'yegm of
exposure, which was to be expected, as there are 29,000, ¢hildren
all told being observed for a year and throughout thoyedr each
child must be in one or other of the categorie_s,"i;léclﬂated ‘or
uninoculated. The table can now be recast to givefable 12.12 from
which a very different piocture emerges. mé_"%ﬁty rate i3 now
about the same for the two groups. Hence it ig. impogsible to
investigate the effect of inoculation unlésyaccurate information of
the dates of getting the disease gn‘ﬂ*ﬁﬂgﬁgﬂﬁBEMtﬂﬁS’ﬁ- available.
In practice, inoculations would tak® place throughout the year, and
this would increase the amount of workinvolved in the calcu]a.tif)ps.
Any form of approxima,ti.qq"mjght lead tq"etrgné?ug. eont.:lumonsi
unless & very regular i{@ul&tion programme ig being ca@ed 91113.-

A

fFable 12.12. Fatality rates
R

Invenlated ~~  Uninoculated
Chﬂ@y;?ara of exposure 1.'3’903, el 1:.1,002 - ..:

JEatality rate per 1,000 0-44 ST 0
AN \¥eara of exposure

1244 The above example demonstrates how essential it i8 -t‘;
have some yard-stick when attempting to measure the s_uccelfs 0

Ally process. Thus a particular serum ma_yb‘e.-tr;ed ouf; for d.l_:[.)ht etr]ia
immunisation, but unless there is a g_i'ouP" of ?‘?QPIG’ .not given ;
Serum, exposed to the same risks, ‘there is.no PE;BSlbIﬁ means (_)

stimating the effectiveness of the mocula,tlon Itis also gecsessﬁ
% emphasise that the persons involved in any cop‘.}pamog ould
ot be selected in some way thatmvahdatescomp&rlﬂom ) tluPP:I’lﬁ:(;
for example, a Jarge hospital decides tomakeanmvesinga on .
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the home background of all its patients suffering from a certain
disease. It is found that 209, of such patients come from homes
that can be classified as overcrowded. On the strength of this a
statement is made that one of the canses of this disease is over-
crowding in the home. Without further information this is not &
reasonable statement to make from the figures given. If a general
investigation showed that 209, of the whole population lived in
conditions that constitute overcrowding there is noreasonto beliove
that overcrowding has any effect. Even if only 59, of the whole
population were overcrowded the statement would not necessarily
follow. Thus the hospital might draw ail its patients fromh g’ area
where overcrowding was very prevalent. Another hosgpital drawing
its patients from an area with little or no overcrowding would have
& very different percentage coming from ovefcrowded homes.
Differences may merely reflect the localities jir which the hospitals
are situated. AN

These examples have demonstrated.@h&t even if figures are
available to support or refute some theory, the interpretation is
often a very tricky process which ouly too frequently is embarked
onin a s]ipshodwlas&%qrdulMpggg;Jgpggﬁration is usnally required,
and the superficially obviousonclusion is not always the correct
one. The interpretation of statistics requires a great deal of practice
and much attention to-detail. Always examine the logic of each
step in a atatistical\]éfoblem and do not be misled by the use of
irrelevant figures,

N

N\ '\ 2 .
AN - BXEROISES
12.1 dulate an index of wholesale prices of metals in the United
Btates for comparing 1928 with 1926 from the data in the following
tabloty '
N\ .
NV Price (dollars} per unit
4 Production — A -
Metal TUnit ('ﬁhnusands} 1926 1928
Pig iron Ton : 39,378 20-4200 17-6800
Oopper Pound 1,744 260 0-1393 (+1468
Aluminiom . Pound - 145,000 0-2699 02350
Lead Pound 1,416,280 0-0825 " © 0-0614
Zine Pound 1,286,500 00737 00603

Silver Ounce 62,719 0-6211 (-5818 .

12.2 Find the average wage of labourers in a certain area subdivided
into five districts which returned the following information :
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Digtrict Average wage = - amployed
4 £8. 10s.4d. - 7 990
B £7, 18s. 34, - Lo a3
¢ £0. 2a 14 i 68
Do £8. 18. 4d, - % 308
E £10. le.3d. 2

Compare the average wage with the unwelghteii maa.n Wage for the five
districts,

123 1In the table below the prices. of gix frult.s a;re.glven for 3 years, '\ o .:
together with the quantities of fraits sold in the middl le. year.. Con- :
struct an index number to show the overall chang_' '

3 years,
. Quantity — ——

Fruit Unit (1932) ~ 1930
Oranges 1000 box 51,368 - - 1-64;
Apples 1060 bushel 85,575 102,
Peaches 1000 bushel 42,443 088
Grapefruit 1000 box C 15,049 12V
Grapes Short ton 2,203,752 . 1883 ¥ 18:16
Lemons 1000 box 8,704 N 235 L ‘,

124 The fo]lowmg table gives the popﬂlatlon-an(i dea,thsm twao towns
A and B for a certain year. Caloulis'this et !y forainh age-group
within each town. Notice that all\the death-rai one. townam
helow the corresponding rateg~of the other town ulat
overall death-rate for each ‘4own. Ts the resul
Previous results, and if why not?
town B using the popula on of town .4 as basis

Age-group Pqpulh.tmn (4) Doaths (4) Populatmn [B} ‘Deaits (B}
0-2 ) 8,000 192 5000_ om0
210 SO 10000 a0 . -3

0-208.) 10,000 40
20-431) . 32,000 260
om 60 8,500 §10

125 *The average number of weeks’ mckﬂe‘ﬁﬁ
and fomale workers in the grocery trada in

Age-group ... 15-24 25-34 .
Malea 108 117 .
Females 1-81 1.02

Population of 1000 men and 100
15 and 65 would be divided amongat

Ago-group ... 15-24  25-34 -
Males 200 263
Femalos 278" 259
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13

TIME SERIES

13.1 Many of the functions and quantities studied in the earlier
chapters can in practics be measured not just once bhut repeatedly. -
A series of values over » period of time is called a time seriesl As a,
first step in the study of such series some form of diagrammatic
representation is often very valuable and enables chahges to be
detected very swiftly. The usual method is to plade fime on the
horizontal scale and the“&{laﬂtnltyth&tm ‘being-measured on the
vertical scale, but it should be noted that thére are in fact two
basic Types of time series. In _ﬂﬁlﬁg_ﬁ._rsi;,__q;__glggjgﬁ__qf_mea:surementﬁ
relating to sorae quantity are made at patticular instants of timey

.1,

Fch as the height ¢ iﬁ'-fﬁéiﬁéﬁﬁié’fgfﬁm’ﬁi‘ﬁﬁﬁ at noon each day,
or the population of England and Wale at 30 June each year, In
the seoond. the meagurements are'the aggregate amounts in a time
ﬁ;ﬁlﬁiﬁgm,ﬁ%%%bgm, for example, the output
of ears per month from a fagtory, or the yield of milk per week
from a herd of cows. Imgraphing such figures it is customary to
put the measurement-against the exact point of time in the first

case, and against t@a iddle point of the time interval concerned
in the second. O\

> \Y
13.2 Tables13.1 to 13.5 provide some examples of the kind of
series that might be met with iy practice. Table 13.1 gives the
population of England and Wales over 150 years. Table 13.2 gives

o 'Q’Tﬁble 13.1. Population of Engkmd and Wales (thousands)

Year Population - Year . Population
1861 9,000 1881 26,000
1811 10,200 . 1891 20,000
1821 12,000 1801 32,500
1831 13,800 1911 36,100
1841 15,960 1921 37,000
1851 17,900 1931 40,000
1861 20,160 1941 42,000
1871 22,700 ~ 1951 T 43,700

the total value of money deposited in the clearing banks for a
period of 20 years between the two wars. Table 13.9 gives the total
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annual rainfall in London for the 40 years between 1873 and 1912
inclusive, and is taken from a paper by D. Brunt in the Philo-
sophical Transactions of the Royel Society, 1925, Table 13.4 gives
the average monthly prices of eggs in England for the years 10347
inclusive, and table 13.5 gives the number of persons insured under
the National Insurance Scheme in Great Britain who were away

A

42,000

38,000

30,000 [~

|

26,000

22,000 [~

Population (thousands)

18,000 —

!

14,000

4
r L 1 ? .

L t
1801 o~ L1831 1861 1891 1921 1951

Year
O\ _
N Fig. 13.1. Population of England and Walss

e

2N\

frén} work for sickness in each month of the four years 1952-5
inclusive. These tables are illustrated in figs. 13.1 to 13.5 inelusive
and various salient features are brought out. Fig. 13.1 ﬂh.mtratea
& steady rise with little oscillation about the trend. F]g 13.2
moves down and then up with a fairly definite trend and leth very
little oscillation about the trend. In figure 13.3 there is a very
marked oscillation over the period covered, but there does not spem
to be very much of a trend apparent over the'whole period of
40 yoars. Tigs. 13.4 and 18.5 both indicate very marked seasonal
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variations that are fairly uniform in their pattern. In fig. 13.4
there is a slight wpward trend over the whole period whereas in

fig. 13.5 no such trend is apparent. Of course it is possible, though -

- unlikely, that there are other oscillations which are being masked
in table 13.2 because the data are only available once a year.

13.3 Looking at the tables and figures given here 1t will be seen
that three kinds of movements oceur. First there is a general or
overall growth which may be up or down, slow or fast, Wit is

e L .
— N

Table 13.2. Clearing bank deposits & 3

Deposits Deposita .\ " Deposita
Year (£m.) Yeoar (£m.) Yéar 3  (£m.)
1921 1768 1923 1728 L Joss 1961
1922 1727 1029 1762 N 1936 2104
1923 1631 1930 1763 1937 2172
1924 1632 1931 1723 N0 1938 2161
1925 1623 1932 1762°¢ 1939 2129
1926 1626 1933 1914, 1940 2377
1927 1675 1934 4847 1941 2318
2800 - www.dbl'auli‘braj'y.drg-m
2600 |-
—~
T 2400
§
8 2200
g
& 2000
1800
lﬁoﬁq_
SAONE 1 T ; R T
NN 92 1926 1930 1934 1938 1942
\ / Year

Fig. 13.2. Clearing bank deposita

broadly a smooth d&'ﬁft?lgpment of the vg_};;qggﬁgysj@m over the years,
Thus the population of England and Wales shown in table 13.1 has
developed over 150 years from some 9 million in 1801 to 32-5 million

in 1901 and 437 million in 1951, é!though the rate of growth has

varied from time to time the  general averall pietura ig of g smooth

nerease all the while. Necondly, superimposed on thi ng-
term tren,

term trend up of causes which arenot funotioning

R I O

!
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there ate often fliictuations over a longer period, referred to as the:
trade cycle.

A

Rainfall (in.)

1874 - 1882 X\ 189 1898 1906
N Year
Fl.g 13.3. Bainfall at London

Table 13.3. Rainfall at London

Ra,m§ Rain- Rain- . Rain- Rain-

£all fall fall fall fall
Year pfin.) Year (in.) Year (in)  Year (in.) Year (in)
Igzh» “02.67 1881 27-02 1889 2385 1807 22-86 1905 2297
1874 1882 1882 2714 1890 2123 1898 17-69 1906 2426
1875 28-44 . 1883 2440 1891 2815 1899 22-54 . 1907 2301
1876 26-316 1884 2085 1892 2261 1900 23-28 1908 23-67
1877 928-17. 1885 26.64° 1803 1680 1901 2217 1909 2676
1878 34-08 1886 2701 . 1894 2794 1902 20-84 1910 2536
1870 3382 . 1887 19-21 1895 2147 1903 3810 1911 2479
1880 30-28 1888 27-74 1896 2352 1904 2065 1912 2788

Thirdly, there are still further variations that gccur when both
_the long-term trend and the seasonal fluctuations have been

" removed. These variations are due to a multlphclty of causes,
- o ir) Beeieee’ SN
e

I3
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strikes, floods, wars, accidents and so on. The effects are irregular

5 of varging gl and axo srsior ol pmeeamre
orwﬁgcigprgiﬁ effects, The rainfall data given in table 13.3 appemr
(fiz. 13.3) to consist mainly of random oscillations with little

trend or eyclical effect.

Table 13.4. Average wholesaie monthly prices of eggs,

in England (in pence per dozen) R
Yoar 1984 1935 1938 ) \I.frs’z\

January 16 15 18 s
February 13 14 17 AN 16
March 10 10 1, 13
April 9 9 Jot 11
May 9 10 1 12
June 11 12 13 14
July 12 14 \\ 15 18
August 17 184 18 19
September 18 as 19 21
October 20 (N2 25 24
Novembher 25\ 725 25 28
December 2[!v SN 23 23 25

www.dbra qui_br’a:l‘y .org.in

N 4

Table 13.5,Fusured Pereons absent from work
due tqa}‘ckness (in units of o thousand)

Year o S es 1953 . jos¢ 1955
Jonuazy\) 037 1068 1070 1125
Febiuazy 974 1221 1107 1073
Maren’ 938 1044 1007 1062
A 780 946 901 937

\\bMay 81 882 904 877

N Tune 770 849 886 855

N aly 785 816 817 811
Y'Y Augus 764 818 805 798
\”\ - September 803 846 841 840
October 882 937 898 897

November 866 930 813 ¢ 910

December 937 871 919 861

Thus any time series can be Iooked upon s the sum of three
different types of effect:
(@) general or long-term trend;
~ (b} seasonal or eyclical oscillations;
" (¢) unsystematic or random oscillations,
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Fig. 13.5. Insured persons sbsent from work due to sicknesa

Any particular series may oontain only one or two of these

. coriatituents, but there will be cases which contain all of them and _
the next step is to examine methods designed to sort out the three .

tyjpes ypes of effect.
134 Tt is eagiest to approaeh this problem by building up a sories
oontammg all three types of effect and then to disseot it again.

13-2
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Table 13.6 gives a fictitions series which purports to show the
demand for a commodity for each guarter of the year over a period
of five years. Column (1) gives the date and column (2) gives the
long-term trend of demand which, it will be noticed, takes the form
of & very gradual increase over time. In column (3) a cyclical oscil-
lation is given which repeats iteelf every year. The four oscillations
add up to zero, so that in any year they meagure the variations
from the year’s average. Column (4) gives a random oscillation for
which there is no systematic pattern or trend, and column (5) gRres
the arithmetical sam of the three components and is the\actual
geries that would be observed in practice. 'S )

N
-
&N

Table 13.6. Constructed series /5

(1) 2 @) AN (5)

Time ’ 4
A~y Long-term Seazonal Random Tofal
Year Quarter trend oagillations® ;.\oéeilla.tions Beries
1 1 1600 +12N 4032 101-4
2 109-2 — 08" +08 100-0
3 100-4 o1 ~10 98-0
4 1006 ONF10 =06 101:0
2 1 1008, o -2 —02 101-8
2 wwrw . dieylibiar z‘f"i%é“ —02 100-0
3 1002 ~1d +0:0 98-8
4 PRI +1-0 .02 102-8
3 1 '\‘.161-6 +1-2 +03 1031
2 . NV 1018 —08 —05 100-5
3 ) 1020 —-1-4 +0:8 101-2
K% 1022 +1-0 +0-5 1037
4 \ " 1024 412 — 02 103-4
& 2 1026 ~0-8 —0-7 101-1
N\ 3 1028 —1-4 +04 101-8
‘.’s\ 4 1030 +140 +06 1048
PR 1 1032 +1-2 08 1036
QO 2 1034 -8 +0-2 102-8
) 3 1036 ~1d — D 102:2
4 08 410 —09 103-9

To examine the resulting series a first step would be to draw &
graph of it; this is done in fig. 18.6, where a specimen estimated
trend line has been drawn in. This has been done by eye and no
doubt different people would all draw & slightly different trend

line for the same set of data. From the trend line drawn, there has

been a rise of +3-9 over the five years compared with an actual
rige of some -+ 3-8. The difference is very small but the amount
does depend to some extent on personal biases in drawing the line.
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In earlier chapters it has been demonstrated how the mean of a
number of quantities increases in accuracy as the number of the
quantities used to calculate the mean inereases. Further, it would
be surmised from the above figures that there is some seasonal
variation presen:. so suppose that, instead of considering the
figures for each quarter separately, the average figures for each

-TIME SERIES

';_llilrlll |||1.|‘.|’1|||
(Quarter 1234_1234123&122‘341_234
Year 1 2 wiw.dkibulibrary.orf.in

Fig. 13.6. Cansl?rﬁctad geries

Ny

Y

year were considered. Theag@gures would contain the four quarters
~of the year once only,\;}én’d thus any seasonal effect would be

eliminated. The valtes are found to bg:
297 vear1 1001,
25 Year 2 100-8,
:"\“. ’ .
,\\~ _ Year 3  102:1,
A\ Year 4 1027,
NN Year 5 1031

Al})wmg for the fact that these are mid-year estimates only, a*rfd
thus span four years and not five, the trend .is seent to be 3-0 in
four years, which by simple proportion is equivalent to about 53.8
in five years, hence verifying what is known: to b'e ﬂ}ﬁ .underlymg
trend. To deternrine the starting-point of the series if; is probably
easiost to find the middle point first, by averaging all twenty values.
This comes to be 101-8 and is a little lower than the true trend value
of 101-9 since the random oscillations have tended on average
to be slightly more neg‘a,tivé than positive. Using the trend, just
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established, of + 3-8 over the five years or +0-2 per quarter,
the values of the estimated long-term trend, together with the
difference between the observed series and the estimated long-term
trend, are given in table 13.7. Looking at the pattern of the
differences between the observed and estimated guantities, it is
quite clear that there are peaks in the first and fourth quarters,
and a trough for the other two. To estimate the amounts of these
four oscillations the best method is to average all the differences
for each quarter, that is take for the first quarter .

2\

#15+ 1’1+ 1:6+1-14-0-5) = + 1-16. _
Table 13.7. Bstimated trend -\ -

‘o

Time Time 77y

———— Estimated Difference ~——*—\\Estimated Differense
Year Quarter - trend Obs. — Egt. Yoar Qugrter trend Obs. — Est.

1 1 99-9 115 3 N8 101-9 —0-7

2 100:1 —01 o 2 1021 +1-8

3 160-3 —-23 ) 1 102-3 +1-1

4 100-5 +0-5 O\ 2 1025 — 14

2 1 100-7 +11 (N 3 102-7 —~0-9

2 100-9 -0 N 4 102-9 +1-7

3 10k w dbraglghrary orggn 1031 405

4 101-3 +li3 2 103-3 —05

3 1 101:3 718 3 103-5 —~1-3

2 1017 S N-12 4 103-7 +0-2

Similarly for thgmer quarters the average differences are

;" Second quarter —0-82,

AN Third quarter ~1-50,

Y Fourth quarter + 1-06.

s’\\“ )
D Table 13.8. Calewlated seasonal oscillations
~O True Calculated Error
) 3

N\ First quarter +1-20 +1-16 +0-04
Second quartur —0-80 —0-83 +0-02
Third quarter —1-40 —1-50 +0-10
Fourth quarter +1:00 +1-08 —0:06

A comparison of the true oscillations {that is the oscillations origin-
ally used to build up the series) with the caleulated oscillations,
gives the figures in table 18.8 and shows a very close agreement.
Notice that the four ealculated oscillations add up to —0-10 and
hence in practice one would adjust all these figures by a quantity
+0-025 in order to make it & pure oscillation. . '
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13.5 In the example just discussed the period of the seagonal
observations with their cycle of four observations was very marked,
and could be picked out without difficulty once the overall trend
had been eliminated. This will not always be the case, however,
and methods must be devised to enable the period of the oscillations,
as well as their size, to be established. But it is necessary first to
find movre general methods for the determination of the trend over
the whole period. The principle adopted is based on the fact that
if new terms containing one of each of the cyclical obsefvations,\
are formed, the cyclical oscillations, which appear equally m
each term, are eliminated. Instead, therefore, of considering(the
observations by themselves, a series of averages is formed, Where
each average contains & number of successive observations. These
averages are called successive or moving averages. ’]\Ih,"g'number of
points in a moving average is the number of items that are averaged.
Thus a 2-point moving average gives the average of two successive
observations and this is repeated for the whole series of observa-
tions. The process is illustrated, for @hg‘ax\da,ta of the previous
example, in table 13.9. Column (3)\gives a 2-point moving
average. Thus 3(101-4+ 100v0y= B0@hitmhichois; placed half-way
between the two values concerned. Then the next value will be
$(100:0 +98-0) = 99-0,placed,ag"aif1 half-way between the two values
concerned. The procedure i repeated all the way through the series
and produces twenty-ghree values instead of the original twenty-
four as the series now-}fa.rts and stops half a unit from each end
value., If these g\-faoiht moving averages are plotted it will be
found that theras still no really smooth trend apparent and quite
a number.of oscillations. Although the series now starts at about
100 and,e&é‘ at 108, there are nine occasions when a value in the
series & loss than the value preceding it and this is still contrary
to"b}io_\trend, which is always in an increasing direction, Column (4)
giveé a 3-point moving average. The calculations are gimilar to
those of the 2-point average. Thus the first three values are

$(101-4+100-0+ 98:0) = 998,
1(100-0 + 98:0 +- 101:0) = 99-7,
T 498010140+ 101-8) = 100-3,
&ndeach _fi?ﬂlﬁe.:is placed opposite the middle value of the three
thathave been uised.-This series produces fewer oscillations than
‘did the 2-point moving average, but the oscillations have nob by
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Table 13.9. Calculation of moving averages
(1) (2) (3) 4) {8} (6)

Time 2-point 3-point 4-point 5-point
—t Obser- moving  moving  moving  moving
Year Quarter vation average BVETARe average AVOrage
1 1 1014
100-7
b 100-0 998
99-0 100-1
3 98-0 - 99-7 1004
99-5 100-2
4 101-0 100-3 , (1002
_ 1014 1002 L.\
2 1 101-8 100-9 . \J 999
1009 1006,
2 100-0 100-2 O 100-8
99-4 WL 1008
3 08-8 100-5°8) 101-3
100:7 \ 1011
4 1026 1015~ 1010
102-8 v 101-2
3 1 108l WG102-1 101-2
101-8 101-8
2 100-5 A\ 1016 , 102-2
T B 1021
3 W\ﬂﬁ;gbl aul:?@?.org_mlm's 1094
3 1024 102-2
4 103:7 2" 102-8 1020
o\ 103-5 1023
4 1 10{34} 1027 102:2
W\ 102-2 102:5
2 {\101-1 102-1 102-9
" 101-4 102-7
3() 1018 1025 102-9
R, 103-2 102:8 _
\1”,4 104-6 1033 102-8
N\ 1041 103-2
B 1 103-6 103-7 108-¢
C N 103-2 1033
@ 2t 2 162-8 1029 103-4
\ 1025 1031
3 102-2 ' 103-0
103-0
4 103-9

any means been completely eliminated and the series does not
progress uniformly upwards. The 4-point moving average in
column (5) produces a series which, with three small exceptions,
increases as the time progresses. This is to be expected since, by
taking averages of four successive observations, each quarter
appears once, and if there is any quarterly effect it will appear
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equally in each item of the resulting series of observations. When
a 5-point moving average is calculated there is once again & lack
of uniform trend in the resulting observations. This demonstrates
that there is an optimum number of points in a moving average
and an increase in the number of points will not necessarily result
in a smoother series. Of course, in this example any number of
points that is & multiple of four, for ingtance eight, would also
produce a smooth series. '

13.6 The purpose of using the moving average has been twofold. ,
First, provided a suitable number of points are used, it enables t1\1e _
seasonal or cyeclical oscillations to be ironed out, and the trend
is thus left more exposed. Secondly, by taking averages the effects
of any random fluctuations are automatically reduced gnd hence
do not swamp the main effects. However, it should (be noticed

that even if these effects did not in fact exist in th&original series,

nothing will be lost by carrying out the averaging procedure, which
one. This is, of

will produce a series very similar to the origi
course, the desired function of the methed,but it is important to
note that only if it iz a linear trend dges the method reproduce the
trend exactly. To illustrate th‘fswc%ﬁﬁw i pEdduced by giving
2 the successive values 1, 2, 3,5 in the expression y=(z—b5)
The first nine values of thissseries, together with the calculation

of the moving averages for three different numbers of points are

Table 13.13? Moving averages y=(x—5)*

O 3-point 4-poird - §-point
. " \ mOving moving moving
x K gy averages averages averages
1 N6 '
Q
L2 9 &7
Re N 75
< /" \\: o 3 . 4 ) 4.7 . 6.0
L 35
4 1 1-7 _ 3.0
1-5
5 0 07 : 2.0
1-5
6 1 i-7 3-0
' 35
1 4 4-7 60
75
-] 9 97



202 PRINCIPLES OF STATISTICS

given in table 18.10. From this able the original series and 3- and
9-point moving averages have been plotted in fig.13.7. Tt will be
noticed that although the curves for the averages are very similar
to the curve of the original series of observations, the values are
all above them and the greater the number of points the greater the
departure of the average from the original series. This unfortunate
property of moving averages, namely that with a concave series of
FA
16 -

12

IPAY,

-

i i x

4 !
\f} 3 ] .7 9
O Fig. 13.7. Moving averages

o"xtjb?aerva,tions % moving average tends to overestimate the trend
éffect, must be borne in mind. Tt will be found that with a series
of observations that is convex the situation is reversed, and the
moving average produces values of trend that are too low. In a
series that is partly of one form and partly of the other the values
produced would sometimes lean one way and sometimes the other.
This particular case is illustrated in fig. 13.8 ugsing the data of
table 13.11 in which the values of the simple algebraic function

y={x—-3)*+20, ‘
are given for integral values of & from 1 to 11. Tn the table the
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Table 13.11. Effect of moving wverages
i\ﬂpomt B 3-pomt 4pomt.
moving '~ fooving moving
® Y \ Wef&geﬂ averages  Averages
2 \)12:0 ' 1i-0
~O : "18:00
\/ 16-6 _
O 16-88
QT 19-0
O X 1887
Q” 5 109
- 1075
6 © 200
' ' 20-26
7 20-1
2112
8 21-0 _
o 2312
9 3.4
: 2-- e 27-00
10 280
11 356"

208
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moving averages using 2, 3 and 4 points can be seen to lag behind
the true trend values at the beginning when the curve is convex,
but to be ahead of the trend for the latter part of the series when
the curve is concave. The curves in fig. 1.8 illustrate thig difference
and the distortion of curved trends must be remembered when
analysing such serjes.

13.7 The effects of using moving averages can now be summarised
for the three components that go to make up any observed{Series
that has to be dealt with in Practice. A

0“

Trend. If the trend is of linear form then whatever th{a‘nﬁmber of

N

- Parture will depend on the direction in whieh the series is curved.
This discrepancy only hecomes seriors when the amount of
‘ourving’ is of a fairly high order., oS

Cyclical or seasonal oscillations. Ifthe period or number of points

used in the moving average is the same as that of the eycle in the
original observaisrs dbFw i 'iﬁﬂ%ifﬁg of'it, then the moving average

Phases of the cyolg of oseillations. Tf the period of the oscillations
in the original sexiesis unknown, it must be found by experimenting
with different ngmbers of points for the moving average and finding
the number 6fHioints which Produces the smoothest form of series

and should not affect the determination of the trend. In practice
the number of points taken for the moving averags will be the
number cotresponding to the eyclical oscillations and it is to be
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hoped that this moving average will produce no significant dis-
tortion of the trend. In general there will then be suffisient
averaging out of the random oscillations to enable the trend to be
accurately determined. . '

13.8  The whole procedure will now be llustrated on an example
concerning the number of insured persons absent from work in
Great Britain over a period of five years. The figures in table 13.12
represent the average number of persons absent each quarter in
units of a thousand persons. Part of the data has aiready been
given in table 13.5 and is taken from a number of issues qf\"iﬂaé’
government publication Monthly digest of Statistics. In column (4)
a simple 4-point moving average is calculated and this(gives the
required trend for the observations. As this trend ig the average
of an even number, four, of observations it corresponds to a point
in the middle of the four values and not to any particular observa-
tion of the original series. To overcome this"t’is\assumed that over
& small period of time the trend is approxifately linear and, henc‘e,
if the average of two successive trend iyalufas be taken, it will
correspond to the point in the T o R 558 Been done in
column (5) where the average, Qf *the, first two 4-point moving
averages corresponds to the, third quarter.of 1951 and so on.
Finally, the differences between the trend and the observed va.llleﬂ,
shown in column (6), agd'anf indication of the geasonal fluctuations.
The values of these deviations are rearranged in table 13_-1::3 to
correspond with the four quarters of the year and the very distinct
Pattern over theyears is made apparent. These quarterly c}emﬁlons
still include & fair amount of random oscillation f'*nd obviously the
more quarterly deviations included, the greater will be the &ocurat;!ly
of acnyésf'imate of the quarterly oscillations. Thus in this case the
begt estimate of the oscillation due to each ‘quarter will be found
by takmg the average of the four V'ﬂil.u_‘?ﬂ obtained for each
oscillation. These values are given af the bottom of table 13.13 .and
it will be noticed that they approximately sum to zero. The shga;ﬁ
discrepancy is due to the fact that the ﬂel’_iﬁ? is of ﬁmte lengtih

the end values are not included in as many of the moving averages
a8 are the central values. It is possible to make R slight ad:;sﬁmttnt
to force the quarterly oscillations fo sum 130:_3.91_7'0:-1.’“13’ un]:e:ds. :;e:;is
s a long one, it is not: usually worl;hmhngsuch an adjus énts‘
The original series may now be bm]ééil-up.mm;the thr(_ae components,
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Table 13.12. Insured persons absent Jrom work

1 2 3 {4) (8) {8)
RBickness 4L-point moving
Year Quarter nos. (000) averages Trend Deviation
1851 1 1170 '
2 - 833
906-50
3 781 879:0 + 980
851-50
¢ 842 8457 + '3
846-00 A
1952 1 950 8301 &9
83825 O
2 787 8440 N\ T+ 5T
851-50 A _
3 774 : 871:5°> + 975
891-50 o\
4 895 g0 + 98
o 917-75 RS
1953 1 1110 Y —185-6
. 093100 ‘\
2 8992 AN gsag + 407
934 50'
3 827 928-4 +101-4
W W dbrauhbrapyﬁ.'ﬁ% in
4 \ 922-9 4 139
. ) Y a23.50
1054 1 1081 9227 —138-3
o\ . 922:00
2 807 8221 + 251
\ A\ 02225
3 () s21 _ 9255 +104-5
2\ : 928.75 :
{ 910 . 9279 + 179
s : 927-00
1955 \*“, 1 1087 9264 —160-8
925-75
;3; 2 890 : 023-1 + 331
N 920-50
PNW $ 816
¢ 889
Table 13.13, Quarterly deviations
Quarter 1 2 3 4
1951 — — + 880 + 37
1052 —110-9 + 579 + 975 4 96
1953 —-1856 + 407 +101-4 4139
1854 —138-3 + 251 +104:5 +17-8
. 1058 —160-6 + 331 — -
Total —595-4 +156-8 - +401-4 +45-1

Average —1489 + 302 +100-4 +11-3
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Table 13.14. Composition o

(1) (2) (3) ' B
"Seasonal .
Year  Quarter Trend oscillation © -
1951 3 8700 —100-4 - %
4 8457 - s -
1952 1 839-1 41489
2 844.9 — 32 :
3 8715 —1004 - R ks
4 904+6 e MDB v e
1953 1 924-4 +1488
: 2 0327 - 892 :
3 928-4 —1004 ;. ;. =1
4 9229 -3 =
1954 1 9227 +148-9 ;
2 922-1 — 302 -
g 925:5 —1004
4 927.9 ~ 118 -
1955 1 926-4 +1488 "
2 923.1 —.32

namely, trend, seasonal oscillations and ; P don Tl o
is done in ta,ble 18.14 where the randony 030111&1;10115 in oolumn &)

or

(s)-émﬂﬁi' |
is satisfied for each OM\rvatlon LOO :

times negative, in Mot eight have sach
tude from 1-0.£6’38-0 and there doés

for pa,rtlcuk.r values to be a,ssocm_
This is _a \desirable feature, as other
m&Qna}i oscillations have been. wroﬂgl
ilistrated in fig. 13.9 where the ‘orig

column (8) are plotted. From this: it
it a concave curve with an upWM‘d ‘benc
is almost horizontal for the end par
indicate that it should be perfec
forecast of absences for sickne
should be borne in mind ho:
casting can be in practice, Th
‘eause a ‘flu’ epidemic to sprea
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1

Year
1951

1852

1052

1954

PRINCIFLES OF STATISTICS

Table 13.12. Insured persons absent Jrom work

(8

Deviation

+ 980
+ w

) :-"n\o-a
~

E 4

AN+ 5T

+ 975
+ 96
—185-6
+ 407
+101-4
+ 139
— 1383
+ 261
+104-5
+ 179
—160-6

+ 331

+ 87
+ 06
+139
+17-9

+45-1

(2) {3} {4) @
Bickmess  4-point moving
Quarter  nos. {000} 8Verages Trend
1 1170
2 833
906-50
3 781 879:0
851-50
4 842 845-7
840-00
1 950 8391
838-25
2 787 844.9
851-50 75
3 74 8716 &
801-50 \S
4 895 904’-6
_ 91'7+75
1 1116 4 " 024.4
931-00\ \
2 892 P\ 4 9327
93)4\ s
3 827 . 9284
www.dbraulib 53’9‘25@ in
4 809w 922.9
. N 993.50
1 IOBK\ 922.7
- Q'f T 922.00
] 8 9221
p. \ : 922-25
3 \J 82 025:5
PN . 92875
x«..: 210 927.9
92700
\w 1 1087 026-4
925-75
A 2 890 923-1
920-50
3 816
4 889
Table 13.13. Quarterly deviations
Quarter 1 2 3
1951 — — 4+ 980
1952 —110-9 + &7 + 975
1953 —185-8 + 40-7 +101-4
1954 —133-3 + 251 +104-5
1955 —160-8 + 231 —_
Total —595-4 +156-8 + 4014
Average - 148.9 + 392" +100-4

+11-3
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Table 13.14. Composition of observations
() (2) (3} (£ (8 {8

Seasonal Random
Year  Quarter Trend ocueillation osciliation  Observabion
1951 3 8790 —100-4 + 24 781
4 8457 - 113 + 76 - 842
1952 1 8391 +148-9 —380 980
2 844-9 — 392 —187 787
3 8715 —100-4 + 29 714
4 904:8 — 13 + 17 895
1953 1 9244 11489 +367 1110
2 932-7 — 392 - 15 892 )
3 9284 — 1004 - 10 8
4 922-9 - 113 . — 286 | 0%
1954 i 922.7 11489 —106 {1061
2 9221 o382 41l LI 8e7
3 925-5 —100-4 N
4 9270 — 113 — g6 S U
1956 1 926:4 +1489 . LI 1087
2 9231 —w2 (G 890

namely, trend, seasonal oscillations and'ramdom oseillations. This
is done in table 13.14 where the randdm oscillations in column {5)
are found in such & manner thakrfhaotigingl, pbservations in
column (8) are reproduced, thatis the identity . :

trend + seasonal oscﬂlaﬁioé % random oscillation = observation,

x Ah @+ (=),

is satisfied for each bbservation. Looking down the column of

random oscillatioty’ the figures-are gometimes positive and some-
times negativéin fact eight have each sign. They range in magni-
tude from\lge"to 38-0 and there does not seem to be any tendency
for pazticular values to be associsted with particular seasons.
This i b desirable feature, as otherwise it would show that the
cbasonal oscillations have been wrongly deduced. The ‘position is
iilustrated in fig. 13.9 where the original series and the trend of
column (3) are plotted. From this it will be seen that the trend
is & concave curve with an upward tendency at the start and then
: is almosat horizontal for the end part of the series. This seems to
- indicate that it should be perfectly possible to make a reagonablo
forecast of absences for sickness for & fow months ahead, but it
should be borne in mind how very full of pitfalls any form of fore-
onsting. ben. be in practice. Thus,a bad spell of weather can easily
oause a ‘flu’ epidemio to spread very wildly and raise the sickness
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rate enormously, giving results well above those that seem to be .
likely from the study of the series of results available. The main
use of an analytical study of any time series, such as is attempted
here, is for short-term predictions, and for forecasts of likely
seasonal or cyclical variations. This can be useful in planning so
that the excess or loss produces no hardship, and it also enables
those in positions of responsibility to be able to determine when
a significant departure from established levels has taken Place.
In many forms of economie data, where the theory of time'sbries

A "\

f

1150

....
R
=1

Number (thousands)
© :
3

850
BOE N I S T SN T
Quater 3 4 1| 2784 1 2 3 4 1 2 3 4
Year 1951 ok 1953 195 1955

\ \E}g 13.9. Insured persons absent

is often a,pp]ié}a, there are a large number of variables in operation

which do-tiot act fully independently of each other. This may be
unknown to the worker faced with a series of observations of one
variable, and some unknown administrative decision sbout an-

<other variable not being examined oan affect the series of variables

under observation. This interdependence of two variables will be

“taken up in the next chapter and it is sufficient to say here that
‘in any time series a sudden jump in the observed series should

always be investigated to see whether any external causes can be
found.

i

EXERCIRES

13.1 The following data give the yearly average percentage of un-
employed in certain industries over thirty years. By using moving

averages find a suitable period and hence deduce the trend of the
observations. T
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Percentage Percantage " Peroentage
Year unemployed Year unemployed Year unemployed
1881 35 1891 35 1901 33
1882 2.3 1892 63 . 1902 - 40
1883 26 _ 1893 75 1903 47
1884 81 1894 69 . 1904 80
1885 9-3 1895 58 1905 50
1886 10-2 188 . 33 1906 38
1887 7-6 1897 33 1907 37
1888 49 " 1898 2:3 1908 7-8
1889 a1 is99 C 20 1909 T
1890 21 . 1900 25 1910 47

132 Use a 12-month moving average to determine the trend vakuds
for the following series of the monthly wholesale farm price index. ’

Yesr  Month ... 1 2 3 4 5,8 8
1942 . TIndex 060 967 9716 987 _ 988 086
1045  Index 1019 1025 1034 - 1037 (041 1038 -
losd  Indes 1033 1088 1088 1039 \NU04£0 1043
1045 Todee 1049 1052 1053 1082NS 1080 1061

Year Month .. 7 8 PRIRVEN TS || 12
1942  Index 987 99-2 go-6{ ylioo0 1003  100-0
1943  Index 1032 1031 c{ﬁ?l’ “ 1030 1029 1032
ot Index 1041 10857 dbseplibmeaorgined 1047
1045 Tndex 109 1057 (052 1059 1068 1071

SN g

13.3 Use a 12.point moving\
{¢) the trend values,
{b) the seasonal osgi n,

(¢) the random osgillation, _

for the followingfignres of mean daily air temperature (in degrees

ngland. Find also the mean and standard

Fahrenheit) at sea-tevel in K
deviations.of the random oscillations found iu {¢} above.

ayerage to determine

Year, zj\ Month .. 1 2 3 4 5 6
Joai )" Tempersture 425 44 478 401 534 573
o49  Temperature 426 432 422 509 530 595
850 Tompersture 408 429 466 467 533 617
1051  Temperature  40-0 387 408 453  5l-0 8BTS
Year = Month 7 8 9 10 1 12
1948  Tempersturs 606 600 576 5l4 464 435
1949  Tempersture 637 632 624 © 544 450 437
1950  Tempersture 615 613 565 509 437 859
195F - Temperabure 620 500 586 508 480 434

134 By using & 4.point moving average split up the following series
_ of marriages in the United Kingdom into trend, geasonal and random
oseillations. Estimate the number of marriages that will take place in

14 ur
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the second quarter of 1956, and dompare it with the number that
actually took place,

Quarter
B * -
Year Firat Sacond Third Fourth
1952 121-3 79:8 1183 804
1953 1076 876 120-8 739
1954 110-4 850 120-2 773
1955 115-3 856 122.5 86-8

(Figures given are in units of g thousand,) ~
13.5 The following table gives the index of retail prices of fodd that -

are included, with other items, in the cost-of-living indexv/Use the

prices of food and, if 80, how much, A\

o Month e\
Year January April Julp\™ Oetober
1952 1000 1039 108" 1083
1958 109-2 112:5 Alsh 110-6
1954 1162 1128 { Qis-o 1161
1955 119-2 1139\ 126.8 125-9
1956 1254 132.50\Y 126.8 1274

13.6 The following figures are &vb:;jé.ble for the electricity generated for
public supply, bWﬁﬁQbﬁ%l'gbﬁggggoﬂﬁ;ﬁmd with an asterisk are not
available. Make an estimate\of the missing figures, and also one for
July 1956

NS Month
¢ ~r—-~————___L________‘
Year \ \S}muary April July October
195280 6319 4775 1108 5526
1958 6609 5269 4439 -
A854 * b634 4973 6241
1885 7988 6102 5115 7022
%.. 1956 8588 8052 T —

R
"0

(Units are million kilowatt hours,)

ml\?';?. ' The table gives the exports of g certain country over a period of
N\bwenty-two years. X in iting to a newspaper points out that the
exporta are declining and quotes the figures:

Averags axports 1929-31 £198m.
' 1935-37 £197m.
194143 £196m,

Y then replies that the converse is true and quotes the ﬁgﬁres:

Average exports 192628 £200m,
1932-34 £204m.,
193840 £206m,

Which of them, X or ¥, is really correct and why?
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Exportd Exports Exports
Year {£m.) Year (£m.) Year (£rn.)
1924 200 1932 205 1939 207
1925 198 1933 205 1940 208
1924 197 1934 202 1941 200
1927 201 1935 199 1942 195
1928 202 1036 195 1943 198
1929 200 1937 197 1044 200
1930 1956 1938 203 1945 208
1931 139 '
13.8 The following figures give the number of oar licences current in

Gireat Britain (in thousands) on certain dates. (\)
A\

31 May 3 August 30 November'

Yoar 28_Fébruary

1952 2195 2397 - 2487 2448, )

1553 2371 2625 2724 7190

1954 2637 2934 3064 {\8059

1955 2056 3300 3479 3472

1956 3325 . §708 sssq.\\.’ 3801
Estimate '0)

(@) the trend, using the ‘method of movingaverages;

(b} the average fluctuations from thetrend for each
' C www.df)f:'hulibrary,or .in '

and standard deviation of the rosiduals when both trend

son eliminated.

of the four

quarters;
(¢} the mean
and quarterly variations have b

S\
esthe average colliery cost per ton of deep-

13.9 The table below giyes

mined coal for-each ¢ i over & period of five years. The figures
have been extracted fuom the National Coal Board quarterly statements.

COOY Tt Beoond  Thind Fourth

' .J§€53 o pees - . 5922 61-16 5941

W\Vi1gse 5976 6149 63-43 83-24

ANV 1gss o 6822 87-11 70-09 69-15

{‘ W qpse’ T 7085 1340 7817 7637

N/ aesred s weeR o T30 8676 8523

(Unitlashﬂlmgs per ton of galeable output.}

Est,;ma,t.etheaveragﬁpercentags rate of incresse in the cost per ton
' ¥ uﬁnga.»i—pomt moving average on the given figares in
Y atablish the trend;

5 applying (@) to the logarithms of the colliery costs per ton.

Phidhi ‘misthod 1 the more preferabls, and why?
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141 So far the methods of statistical analysis examined have
dealt -with samples of individuals on each of which a single measure-
ment has been made. The tests concerned have been develaped
utilising the Pprobability distribution of this single measurement, .
Many statistical problems, however, are concerned with roréthan
asingle characteristic of each individual, For instance, the height,
, and weight, ¥, of & number of schoolboys are rechrded and it is
. desired to examine the relationship between the tWo measurements.

Table 14.1. Length of copp\eq-;rod

Temperature Température
in°C. Length in mm, qn o, Length in mm,
() W) O )
204 2461-12 A0 429 246203
27-3 wwRdslirtilibraryiorg.in o o 2462-69
385 246186 674 2463-05

Sometimes the relationship between the two measurements is
very marked so that 2ty Statistical analysis will be quite straight-
forward. For example, an examination of the length of a copper

- bar at various tgl\npera,tures wag carried out in a, laboratory under
very acourate Londitions. The results are given in table 14.1. The
most straightforward way of analysing this data is to plot the
8ix pairselmeasurements on graph paper, the z-axis denoting the
temperatiire in degrees centigrade and the y-axis the length of the
rod inmillimetres, This is fllustrated in fig. 14.1 and it will be seen
that the Ppoints lie almost exactly on a straight line: in fact it is
quite a simple matter to draw by eye a straight line that very
nearly passes through all the six points on the figure. From the
figure it is then a reasonably straightforward matter to make a
quick and accurate estimate of the length of the rod for any
intermediate temperature, Fop instance, if the temperature were
61-2°C. the dotted line in the figure indicates that the corresponding
Point on the line gives 3 length of 2462.81 mm. Alternatively, if
the rod measured 2461-93 mm. the temperature would be approxi-
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mately 40-3° C. Thus the line can be used for determinations of
temperature for a given length and of length for & given tempera-
ture. Such a line is called a regression line. If & line is used to
estimate 4 from z it is referred to as the regression line of y on .
If the line is used to estimate z from y then it is referred to as the
regression line of z on y. In the example just discussed the points
lay so closely on a straight line that there could be only one
regression line whether y was being estimated from w or the other .
way round. Later examples will ghow, however, that this is not \

always the case and there may be two lines to be considered, ()
o\ e

Length {mm.)
:

W ,\»\{{db}a ulibrarylerg.in
X |

~

WV, |
24615 o) '.
b\ |
O |
_ 2,451-0'___.__+L!..\-—.——-—-‘—-— i _ ¥ L
20 (N30 10 50 ) 70
:“'\.‘ ’ Temperature (*C.)

. RN\ \ Tig. 14.1. Temperatare and length of copper rod

142) In many practical
obtained do not lie quite s0 0
the cage of the copper bar. -

Example 14.1 Table 14.2 gives the weight of heart, z, and the
in a random sample of twelve adult males

" weight of kidneys, y, In
" between the ages of 25 and 56 years. These are plotted in fig. 14.2

and it will be seen that a unique straight line can 1o longer be
drawn through the twelve observations. If there is believed to be
 an underlying linear relationship between the two variables, the

" fact that there isno such unique straight line mast be due to random

problems the pairs. of measurements
byiously along a straight line as in
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flucbuations in the individuals selected for measurement. The
*best’ line would, therefors, go through the middle of the observa~
tions in such a manmner that the variations about the line were
merely doe to random sampling fluctuations. If a line were fitted
by freehand drawing, different people would all arrive at different
answers. Hence some more objective technique is required for
fitting a line that in some respect is the ‘best’ line.

Table 14.2. Weights of heart and kidneys ~\
Weight ‘Woeight Weight Weiglt
of heart of kidneys of heart of kidneys
Male {oz.) {oz.} Male {om.) C "\ Noz.)
no. x ¥ no. z N ¥
1 11-50 1125 7 90BN ¢ 950
2 0:50 1175 . 8 1150- 10-76
3 13-00 1176 9 325 11-00
& 15-50 12-56 19 - 975 9-50
B 12-50 12-50 11 4N 1425 1300
6 11-50 12-¥5 12\‘ 175 12:00
Yi N\/
15
L}
-~ .
-~z Regression line
8 of yon x
St
£
21
ls
B0
N
0N - :
\ Y 9 1 | ] I | 1 Y-
. 9 10 11 12 13 14 15 x

Weight of heart (o0z.)
Fig. 14.2, Weights of heart and kidneys

The first step is to decide which variable is to be estimated from
the other. In this case it will be assumed that kidney weight is
to be estimated from the heart weight. For any fitted line the
difference between the observed value of y and the corresponding
value of y on the line can be found, These differences are squared
and added up for oll the observations and the fitted lLine is

s chosen so that the sum of these squared differences is a minimum.
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* Notice that it must be the squared. dlﬂ'ef
and not the differences themselves, of
positive and some negative and a line could
that was actually a bad fit to the observations.
differences are looked upon as the errors i estin
of values of «, then the procedure congigts in
of squares of the errors. It is, however, 110t TecHss
number of possible lines by eye, measure th
points, and finally find the line that. give
squared errors. There is a strajghbfoﬁw, | alge
finding the required line. i
Suppose that, in general, there are:
(%, y). It is known from the plotting:of
line relationship between 2 and yis of
b and ¢ are constants. Thus if 2'is'eg
value of i is 2b + ¢ and if x is equal to
of i is 3-5564-¢. b is called the slope of
steepness. If biszero the line is honztm
the line is almost vertical. For a regré
equation is wwyrdbtoul

or y ——(ﬁ = 5(5‘ :

% is similarly thq mean of the val
§ - ® _=,-E'x]

s

whilst, is the slope of the line- an
‘ bet‘v?een x and y. The formula i

b:’____

The symbol Z(zy) stands for ..
and y; that is, correspoﬂdm%' ol
~ together and these resulting produg

vations. The denominator will:
being » times the variance of
‘above the oomputatlons :
shown in table 14 3.
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fluctuations in the individuals selected for measurement. The
‘best’ line would, therefore, go through the middle of the observas-
tions in such a manner that the variations about the line were
merely due to random sampling fluctuations. If a line were fitted
by freehand drawing, different people would all arrive at different
answers. Hence some more objective technique is required for
fitting a line that in some respect is the “best’ line.

Table 14.2. Weights of heart and kidneys

"N\
Woeight Weight Weight Waight
of heart of kidneys of heart af kidneys
Male {0z.) {oz.} Mela {0z.} \' Moz.)
no. P i no. z g
1 11-50 125 7 B-00 9:50
2 9-50 11-75 8 1}-50, 10-75
3 13-00 11-75 k] o8 25 11-00
4 15-50 1250 10 \A76 950
5 12:50 12:50 11 W 14-25 13-00
8 11-50 1275 12 AN 1075 12:00
y A\ '
st
. \
SN - b
www.dbra uljbljarry or L
~ 12 o\ Regression line
o N of yon x
Tyt
Ju
k-
B
38 Regression line
1o of xony
ool L I I I 1 Lo
o\ 1 . 1 12 13 1 15 %
\ / Weight of heart (0z.)

Fig. 14.2. Weights of heart and kidneys

The first step is to decide which variable is to be estimated from
the other. In this case it will be assumed that kidney weight is
to be estimated from the heart weight. For any fitted line the
difference between the observed value of ¥ and the corresponding
value of % on the line can be found. These differences are squared
and added up for all the observations and the fitted line ig
chosen so that the sum of these squared differences iz 2 minimum.
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Notice that it must be the squared differences that are a minimum,
and not the differences themselves, otherwise some would be
positive and some negative and a line could appear to be good
that was actually a bad fit to the observations. If these squared
differences are looked upon as the errors in estimating y from a seb
of values of z, then the procedure consists in minimising the sum
of squares of the errors. It is, however, not necessary to draw &
number of possible lines by eye, measure the errors for each of the
points, and finally find the line that gives the minimum sum of
squared errors. There is a straightforward algebraic method for
finding the required line. O\
Suppose that, in general, there are # pairs of measuféiments
(x, y). It is known from the plotting of graphs that ‘any straight
line relationship between and y is of the form y=be+e, where
b and ¢ are constants. Thus if z is equal to 2. 18 corresponding
value of y is 2b+¢ and if # is equal to 3-5 the sorresponding value
of y'is 3-5b+4¢c. b is called the slope of theline and measures its
steepness. If bis zero the line is horizoqtql}vvhilst if b is very large
the line is almost vertical. For & regredsion line the form of the

www dBradlibrary org.in

equation is _ y =bx +{(§—bE),

_or | yTy';é’b(m—f), (14.1)

where7 is the mean of thé values of y, that is
N7
\ g=Zy/n,
% is similarly thédnean of the values of z, that is
{ ":.‘\ " 7= Zajn, .
whilst b% ;;}:Ee slope of the line and depends on the relationshi
betweer = and y. The formula is . S
o S —n Lo

The '_a';yl;qbol'z'(my) gtands for the sum of the cross products of x

and. y; that is, corresponding values of z and y arve multiplied
- together and these resulting products are added up for then obser-
S .'.va.tidﬁs. The denominator will be recognigsed from formula (7.3)88 - . -
‘being » times the variance of the values of . Using the formulae
Zaibove_;:.the.ei}ompuﬁa;tions are relatively: straightforward and 8re v B
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. Table 14.3. Computations for regression line

Obser-

vation ® 2 ¥ ye ay

1 11-60 13225 11-25 126-56 129-37
2 9:50 90-25 11-75 138-06 111:62
3 13-00 169-00 1195 188-06 152-75
4 15-50 240-25 12-50 156-25 19375
5 12-50 156-25 12-50 156-25 156-25
6 11:50 132-25 12-76 162-56 146-62
7 9-00 81:00 9-50 90-25 85-50
8. 1150 182-25 10-75 115-56 12362
9 9-25 - 85:56 11-00 12100 101-75+ N
10 875 95-06 9-50 90-25 92-62
11 14-25 203-08 13-00 169-00 186:26.
12 16-75 11556 1200 14400 12500 ’

Total 138-00 1632-75 138-25 160781 ‘..1"608- i2

From the table the required quantities are ‘“,j\"
S == 138-00, Ty = 1{8;25,’
Tay=160812,  ¥a?<1832.75.

The eolumn of 32 iz not needed at this éte;,ge but will be used later.
The three expre@é‘iﬁ‘ﬁé”i‘ﬁﬂﬂﬁ’é’&rﬁgf‘;ﬁl@ regression equation are

F=11-600 §=11-52,

p 160812 1589875 _18-245
©16324U5-1587 4575

Hence the requjred%uation will be

SO y—11-52=0-3988(x — 11-50).
0 y=0-30882 + 6-9338.
This hﬂ&é plotted in fig. 14.2 and would be used to predict or
esi?in\iaite the Indney weight, y, for any given value of 2. Thus for
aheart weight of 12-2 the estimated kidney weight would be
1-80. It should be noted that the regression line will always go
through the point that corresponds to the mean of the observations
of # and y. This can be seen from (14.1) because both the left- and
right-hand sides of the equation hecome zero at the point (%, 7).
This provides a useful check when drawing any regression line. -

=(-3988.

or

143 Suppose now that the problem was posed the other way
round, and that it was desired to estimate  from y. This requires
the regression line of « on y, and the form that it takes must
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clearly be obtainable from (14.1) and (14.2) by interchanging = end
y wherever they ocour, Thus the regression line of z on y will be

x—Z=b'(y-7) (14.3)
Sey—nZ.¥ :
where 2oy Y
V=S (14.4)

These equations are very similar to the earlier equations and the
only new quantity required is %(y?), which was obtained in the
last but one column of table 14.3. Hence

18-245 : O\

¥ =1gom= 1 o

and the required regression equation is
2—11-50=1-2119(y—11:52),
or | @=1:2119y— 246110

Tt should be noted that this is not the s&mee:q\ua;tion as before and

it will be seen from fig. 14.2 that there’ iy some considerable

difference. The reason for thriswdiffzenessis, thatntwo different
quantities are being minimised, Pé'?ﬂely
@ sum f@éa,chxof (estimatedy—obaerved ¥

Regression of y on
chyof (estimated z — obgerved ).

Regression ofx ony: s@fd‘r o
What this implies geguletrically i8 demonstrated in fig. 14.3 where
(@) shows the vertiodl deviations which are to be minimised in order .
to find the regr:&sﬁi'on line of y on z whilst (b) shows the horizontal
deviations\.%hiéh have to be minimised in order to obtain the

1 . In general, these two processes will not

regression,line of zony
loaght§ the same snswer, unless there is a perfect linear relationship

between the two 'Va,_ria'bles.
144 There iz no need to carry out all the calculations for the
regression lines in terms of the units of the original observations.
Changes in seale -and qﬁgin' can be made and a con? ergion back

"“to the original units carried out at the end. This will be illustrated

" with the short series of data in tabls 14.4.

Erample 142 In table 144,  is the yield in pounds of mangold
roots whilst y is the yield in pounds of mangold leaves for the same
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yIL
13

pu—
L]

Weight of kidneys (oz.)

! N\
I A ¢
F LA
10 | W)
| ;"\\
1 « N7
L] . A3
A\ 3
9 1 1 ! i JQ ) >
9 10 11 12 13 \\M 15 x
. Weight of heart (oz, )
Fig. 14.3 (a}. Regresmon of,“y on @
¥4

&

Weight of kidneys {oz.)

P t ! I 1 L L
;9 10 11 12 I3 14 - 15
Weight of heart {0z.)

Y

Fig. 14.3 (3). Regression of v on ¢
plot. The data refer to twelve plots each of the same size. @ is
obtained by taking the relation
&' =10(x - 350),
whilst 3’ is defined by the relation
¥’ =10(y — 50).
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From the table the following totals are obtained:
S = — 158, Sy =133,
T(a')?=241,830,  Z(y)?=236,285,
S (a'y’) = 62,826.

Table 14.4. Yields of roots and leaves of mangolds

Plot: .
no. % y & ¥ =) @y ='y)
1 3169 673 260 173 72,361 20,099 46,537
2 3718 528 218 - 28 4752 T84 6104%
3 3551 509 6l 9 2,601 81 450
4 3563 500 63 9 3,960 g1 Nad7
5 3352 486 -148 =14 21904 196 2,072
6 8320 442 —180  —58 32,400  B,8647.0 10,440
7 8855 5L9 —l45. 19 21,025 361Y —2,755
8 3408 603 — 92 3 BABE )9  —276
9 8627 468 27 ~32 720 024 —864
10 3524  49:8 24 -2 BTBNY 4 ~48
1 3389 514 —llI 1 1g3A Y 196 -1554
12 3368 484 —13¢ 16 17996 256 2,144

Hence the regression equation.nf H’hé&ufffaﬁg}l} b in
4 — 11:0833 =0:2094(z' + 13-1667),

and for &’ on ¢ W]]lbe im<
o + 1940867 = 1-85561(y" — 11-0833).

These results can I\}e’.uéed in this form throughout, or alternatively
the equations pgnbe converted back to the original units. In con-
version back'te the original ‘uanits it should be noted that in this
case botl{'6'and ¥’ are umaltered. This is because the quantities
involved‘are independent of origin and depend only on scale. As
tg'e:;oalléa of z and y have beén changed in the same way, the altera-
tiows will be the same in both numerator and denominator and
will thus cancel out, leaving b or b’ unsltered. The modified
gquati_bn for y on z will thus be '
s g (11-0838) — 50.=0-2694(x +75(13:1667) — 350),
27T g 51:1083= 0-2604(z — 348-0833),
“and. for z on ythﬁ regression line is -

: - 348-6833 = 1-8551(y — 51-1083).
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145 In the great majority of practical problems only one of the
two regression lines is required, but it is always important to
decide which one it is. In the initial stages of an investigation
both characteristics are measured in order to establish the form
of the relationship between them. In subsequent work only one
of the characteristics may be measured and the other estimated
from it. In this case only one regression line is required and the
other line need not be caleulated.

The coefficients b and &’ measure the slopes of the regression
lines. If there is no relationship between the two charactéristios
the regression lines will be horizontal or vertical, as a knowledge
of the value of one characteristic does not give any indication of
the value of the other characteristic. Since the denommators of b
and b are variances, they are always pomtwe,.thas implies that
if b or b’ issmall, the numerator is also small. Hénte the numerator,
which is & symmetrical expression in # and'g,is to some extent a
meagure of the relationship between  the” two characteristics.
However, the numerator alone would no’b\)e & satisfactory measure,
as it depends on the scale of the mea,Surements If all the values
of © are multiplied by pEr e yREFdBor increases tenfold bat the
degree of relationship between z and y remains effectively the
same. This makes it essentfa.l to introduce a factor that will take
account of this undeem@,ble property. The factor chosen is the
standard deviation, and/the coefficient of correlation or association
between two vana,]cﬁ‘es, % and g, is defined as

b \ 4 Xay—nE. g
27 TR S -
This exﬁesmon can be written in a number of wajys, all algebraically -
equwalent for example,

(14.5)

~O Afn) Sz —7) (y— y)
: | e — (14.6)
since 83 = (1/n) Z(x?) ~ 7.

It will be noticed that the denominator of r can only be positive
but that the numerator can be either positive or negative. What-
ever the values of » and y the values of r will always lie between
+1land —1. Positive values of » indicate positive relationships;
that is, the higher the value of x the higher the value of . Similarly,
negative values of # indicate inverse relationships; that is, high



PAIBS OF CHARACTERS \ :{\\]lr‘-;-’ 92t /1
values of one variable tend to be associated with low va\t.iues of the
other variable. Fig. 14.4 illustrates the situation with four scabber
diagrams giving four different values of r. Kach dot represents
one pair of measurements and the changeover from  negative
correlation through zero to positive correlation is shown.

¥ Y
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- - ..‘ : L] at : . - - i .. * y . * \ \
- '.. LI Y L] - *. .“.: L) ::. ‘ 3 \
. . * Lt atiee M
R e T TG
. .- ., - ° m(\'\
_——____-_______+. (- F
(i) 065 x (i) =0 E
1} r=—ur -
5 o
4 sk &
Ve e YR dbraulibrary.org.in
e .o :.'-‘ .: .. . -.. . :. .
R ar
.. ‘.. .:. : .'g }\ R :'o
o".l‘.: 'l' .\\. .'-.:
e e T\ ) .
sttt e O ane
. - ‘.\ - g.'
L > ':.
x:\.v .7
:“\.‘~ .‘.
x (V) r=+0% *

NG - o

\'"\} s . F.ig.-.14.4. Examples of scatter diagrams
14.6 -IThe calculation of the coefficient of correlation iy straight-
on lines have previously been calculated

forward. If the regressi
then the coefficient may be obtained directly from the slopes since
Do . ?':A\}(b Xb’). (14.7)

For the example on the weight of heart and weight of kidneys
| p=0-3088,  b'=12119
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whilst in the example on the yields of roots and mangolds
b=02694, b’ =1-8551

and 7= ,J(0-4998) = 0-7070.

Both cases exhibit positive correlation, and in both cases the
correlation is quite strong. This, of course, shows that given one
of the two variates the other eould be estimated from it with &
fair degree of accuracy.

~ The calculation of the coefficient of correlation requires the
same quantities as the calculation of the two regression ]ines e
method will be illustrated in example 14.3, Ko \

Eryample 14.3 Twenty-seven candidates entered foraC'ml Serwee
examination. There were five compulsory subjects to be taken,
the maximum mark in each subject being 300, {n'table 14.5 the
marks, z, in arithmetic are given, together wiphiwhe total marks, ¥,

o

obtained in the other four subjects. N
Table 14.5, Oorrelatm\Jf marks
Candidate
no, aul lé ¥ W'y G
1 230 “’“""&l?‘a” AT or} 56‘2“ 307 94,249  27.630
2 218 B,084% 1748 148 21,004 11,544
3 187 47 2009 677 77 5,929 3,619
4 186 46 A N\2,116 658 58 3,364 2,668
5 182 42+\ " 1,764 698 98 9,604 4,116
6 167 £n 729 643 43 1,849 1,161
i 164 o \24 576 824 224 50,176 6,376
8 162 () 22 484 126 125 15,625 2,750
9 1580 . 18 324 - 483 83 6,380 1,454 .
10 4, 14 196 746 146 21,316 2,044
11 0 11 121 645 45 2,025 495
12 N\\150 10 100 628 28 78¢ 280
13N 141 1 1 580 - 20 400 —20
Je 139 — 1 1 690 90 8,100 —90
{16 138 - 2 4 561 — 39 1,521 78
16 135 — 5 a5 529 — 71 5,04F 355
17 130 — 10 100 528 — 74 5,476 740
18 126 — 14 196 560 — 40 1,600 660
19 124 — 16 256 516 — 85 7,225 1,360
20 1ng - 27 720 634 3¢ 1,156 —918
21 101 - 39 1,521 484  —116 13,458 4,524
282 90 — 50 2,500 562 - 48 2,804 2,400
23 s — 62 3,844 369  —231 53,881 14,322
24 71 — 69 4,761 288  _—312 97,344 21,528
25 61— 79 6,241 463  —137 18,769 10,823
26 48 - 92 8,464 444  —156 24,386 14,352
27 37 —103 10,609 386 214 45706 22,042

Totals —139 62,0565 — 87 519,699 155,233
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For the caleulation an arbitrary origin was taken for x at 140,
making ' =z—140, and for ¥ at 800, making o =y—600. The
various squares and cross products are then obtained and added
up for the twenty-seven candidates giving

o= — 188, Sy’ =— 37,
S(a’)2 = 62,05, T(y")2=519,599,
¥ (x'y’) = 155,233,

Hence @ )-n¥i= 62,0656-716= 61,339.
Sy P-nyi= 519,509 5= 519,548, R\,
S'y)—~nE . § =155,283~ 190 = 165,043 N
Substibution in (14.5) gives - &O
155,043 155,043 _ s 08 )

=‘__‘__.__..———‘-'_-_-_‘=
r= JE1,339) (519,648) 178518

The denominstor is always positive and qh@é;ﬁign of r is the sign
of the numerator. In this case there is stronig positive correlation

between the two sets of marks, that,is:,’.ca:ndidabes who get a high
mark in arithmetic tend o get a4 i k in the other subjects,
and vice versa. Fig. 14.5 gives 2508

demonstrates the strong asggkma.tiop b
L3

L B RSThe 6F the marks and
etween the two measurements,

147 Inmany 'ca,se._s. th\e)l&ta are not given, or are not available in
urements, but in the form of a grouped

the form of pairs of ‘meas!
two-way table stieh as the table for the heights and weights of

schoolboys giv(aﬁé}ﬁ_the-end of chapter 3. In this case the technique
ia essentiplly the sae, 88 oach cell in the table is dealt with in

turn andits cont ibution to the correlation caleulated. The pro-
cedufe)is illastrated on the data In example 14.4, which contains
rabhop mipte observations than would ususlly be met with in
practios; bub illugtiates fully the principles of the calculation.

" Ewample 144 The Jdata and workings are shown in table 14.6
' .and’ conoern the length and breadth of laminae of runner-beant
jewves. - The data are grouped in intervals of width 0-5 cm. and
¢ontral values-aré given. In each cell of the table the upper figure
'ig the frequency of observation in that cell. The lower figure will
e explained shortly. An arbitrary origin and scale are given to
‘both » and y in order o make the computations more gtraight-

forward
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The new scales are & = 2x — 5-5),

y' = 2(y-—- 6‘0)-

In any column of the table all the values of &’ are equal and in
any row of the table all the values of ' are equal. Hence the mean
and variance of #” and %' can be found from the two marging
which give the total number of observations in the respective

y \ /o
50l N\
N s
&
850 |- O
O3
L 0 . V.
g . O
o) . .
8 650 AN A
'5 [~ N . ¢ .\
& AN
g P\
'%: 550 . ¢
g www.dbraulibragyndrg.in
450 1 ] . " : 3
) <
30 |- O
<
250 lx ) ! 1 ! i L 1 L
30050 70 90 10 130 150 170 190 210 230 %
\x'\ Arithmetic marks
'\: "/ Fig. 14.58. Marks in examination

c@iumns or rows. These two marginal distributions both sum to
“\000, which is the number of observations in the whole table.

Calenlations give S’ = 325, z(x 2=1907,
2y'=190,  I(y')2=2160.
For example,

Ty =8x 26+ 10X 16437 x 9+ 125 x 4 + 236 x T+ 280 x 0
+192% 1489 x4+20x9+8x 16=2160.

Hept;e Z(x")2—nF2=1907 - 105625 ~ 1801-375,
Z(y')? —ng?=2160— 36-1 = 2123-9.



PAIRS OF CHARACTERS T 225

Table 14.6. Length and breadih of laminae of runner-bean leaves

Breadth of lamina in cm, {central values)

35 | 40 | 45 | 50 56 | 60 [ 65 | 70 | T
el 3l 2| —1| o 1| 2| | a]fotels
11 1| 3
51 10 20 )
\
80 £ I 2 5 2 A0
4| 261 60| 32 [{\S)
= '.\
§1 75 3 1 3 af 18| 12 [ \2] #7
3 0| 12| 96| 108N 2%
— S
E| 10 2 1 8| 42| seNs| 2| 128
g ' -4} 0! 84| 216N\708 | 16 (-
g | 65 1 e b e er| uefda| s 236
ﬁ -3 —o| 0|26 88| I
a 60 0 4| 52123 |88 | 18| 2 280
3 Orfr -dﬂazi:aﬁ]ﬁbl‘aloy,OL‘gin 0
L] 3
S oss .| -1 1| 20| 98 75| 18] 1| 1 192
£, s| 20l 78| o| -1 -2|-38|
50 | -2 1] 44(28) 89| 15 2 89
gl ex\N12| 78| 0| —4
o5 | -3 [ el 8] 5) 1 20
sat g6 | 8| 5] 0
2 |-
40 LYY 11 2f 4| 1 8
. ':\" 6] 24| 32| ¢
b [ Wotats [ 4| 12| 65| 182|286 | 270 181 48 7 | 1000

" The pext step is to calculate the cross product term Z(z'y’). In
any one cell of the table all the observations will contribute
the same amount to S(x’y’), namely, the product of =’ and ¥'. '

. Hence the total countributions of the observations in that cell to
S(z'y') - will be the value o' xy for that cell, multiplied by the
- “number of observations in the cell. This subsidiary calculation
. was made and the result recorded in italics as the lower number
. in'each cell. For illustration consider the column headed 6-5.

uF

LI5S
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~ First cell: ' =2, ¢’ =5, number of observations 1, contribution
=2x5x1=10.

Second cell: "= 2, ' = 4, number of observations 2, contribution
=2x4x2=18.

Third cell: &' = 2, ' = 3, number of observations 16, contribution
=2x3x16=96, and so on.

There is one row and one column of cells for which either 2 or iy
or both are equal to zero and these cells will make no contribution
to Z(2'y"). The remaining cells fall into four sections. In the“upper
right-hand and lower left-hand sections of the table the, product
(='y"} is always positive, since z’' and ¥’ are either both\pésitive or
both negative. In the other two sections the product (x'y’) is
always negative as one variable is positive and'one is negative,
It is convenient, therefore, to deal with each of the sections
separately, and to add up the contributiongvo S(z'y) from each
of the four sections. These contributiong\are :

upper right-hand : \ ,\ ‘+ 1030,

lower right-hand N 27,
ﬂp’ﬂaﬁ%&;ﬂﬁ&‘f:orgm -~ 16,
lower lefbeliaﬁd: + 540,
~ Hence O Ey) = + 1527,
From (14.5) &V
.’r\=— 22y ) —nz .y
@ VB - -
\ 1527 -—81-75
()
. = = (7491,
$) 1956-00
A\

Aah:a.s\been mentioned earlier no adjustments need be made to the

. Coefficient to allow for the arbitrary scale and origin, since the
jeoefficient is unaltered by any such changes. No adjustment is
made for any error involved in assuming the frequencies to be
concentrated at the mid-points of the intervals, Any errors in a
cell due to this assumption will approximately cancel out with
errors of opposite sign from other cells.

14.8 If there is no association or correlation between two variates,
sarpling fluctuations may still cause a small sample to show a
correlation that would not be found had a large sample of observa-
tions been available, Hence it is important to know how large a
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sample coefficient of correlation must be in order 6 be reasonably
certain that correlation is present in the normal population from
which the sample is drawn. As sampling fluctuations are of more
magnitude in small than in large samples, a larger coefficient of
correlation is necessary in a small sample to indicate the presence
of correlation. The sampling distribution of r in samples drawn
from a population with no correlation between the individuals has
been obtained theoretically, and in table 14.7 the value of r
necessary to establish significance at the 5%, level in a sample of
size n is given. It should be moted that, to be significant, the
observed value can sither be less than —r or greater than +~r,‘
and the larger the value of = the smaller that of r. In exAmiple
14.4 the coefficient of correlation was 0-75 from 1000 pairs of
measurements, and this is clearly a significant indigation of
association in the population from which this sample of observa-

tions has been drawn. O
.'\ P
Table 14.7, Significant m&u&s of r
n 9'
W W dbrau’l:ﬁn ATy .or m
10 0632 YO
- 20 0-444 . 70 0 235
30 0-360 N . 80 - 219
40 312 4 80 0-208
B0 0 278 \ 100 0-197

: Q '
149 If it has been,fo}nd that there is a significant degree of
correlation betweendwo messurements # and y, so that « can be
used to estimatesgby the equation
&€ y-g=bo—3)
then the\ﬁé’xt question is how efficient an estimator of y is obtained
by #his-method. The answer to this lies in the variability of the
obset¥ations about the fitted regression line. Suppose that in
_example 14.1, on the weights of heart and kidneys, the differences
between the actual weights, y, and those estimated by the equation
4 =0-39882 + 6-9338 were found. These differences, or residuals as
" they are called, are a measure of the efficiency of estimation, since if
. they were all zero it would imply that the observed and estimated
. values of y coincided. To add up these residuals would be no use
" as a measure of the efficiency of the estimation, gince some are

“ * positive, some are negative and their sum is approximately zero.
15-2
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If the variance of the residuals was used, the process of squaring
eliminates the sign, and the larger the variance of the residuals the
more the observations vary about the regression line. Let this
variance of the residuals be denoted by s2. Clearly what is needed
is some method of caleulating s2 other than by the tedious process
of evaluating, one by one, the differences between the estimated
and actual valaes of . This can be done by using the fact that the
slope, b, of the regression line is dependent upon the values of
zand y. If 52 is the variance of the complete set of measurenients
of y, then as » inereases from zero it is to be expected that s} will
decrease, because the relationship between x and y remoyes some
of the variability. The actual relationship, which will notbe proved

here, ig sEi=383(1—12). 7.\ (14.8)

If r is zero the two variances coincide, which ~1‘é:td be expected as
it implies that no knowledge is gained in the' estimation of ¢ by
having the value of # available. If 7 is, P1or —1 then 2 is zero
because there is perfect association bp.t’v}een the two variables and
a knowledge of » fixes the value of #.The rapidity with which the
overall variance, %fﬁbﬁ%ﬁﬂ%‘%‘é& 'llcgqﬁ;ela,ting with a variable z is
shown by the foﬁowmg figuress™
£ 01 02 03, 04 05 06 07 08 09
1—r* 099  0-96 OM 084 075 064 051 036 019
It will be seen tha, # has to be quite large before much reduction
in the variance is‘oﬁtained. For the weight of kidneys the value
of s is 12546 amil'r? is equal to 0-4833,
A\
Hence 7 s=1-2546(1 - 0-4833) = 0-6483,
or ‘Sf' 8, = {8052,
Thigwshows that a considerable ncrease in the accuracy of the
estimation of kidney weight has been made by knowing the heart
“weight. For any x the estimated value of y will be 0-398%2+
6-9338 oz. and the standard deviation of this estimate is 0-8052 oz.
If the observations were normally distributed about the estimate,
some 95 %, of the observations would be expected to fall on either
side of the mean within a distance of 1.96 times the standard
deviation. In this case the limits within which 959, of the
observations might be expected to fall are '

(0-3988x -+ 6:9338) + 1-96 x 0-8052,
or (0-3988x -+ 6-9388) + 1.5782,
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Thus if  is equal to 11- 50 oz. the approprlate limits for y would be
9- 9418 and 13-0982 oz.

- 14.10 Tt must be emphasised that the coefficient of correlation and

the regression lines are measures of the linear relationship between
two variables, and that a low coefficient of correlation does not
rule out the possibility that the variables are related in some other
manner. The next example, example 14.5, gives a situation where
the coefficient of correlation by itself does not adequately describe
the data.

Example 14.5 The data in table 14. 8 give the yleld stresa‘ £
(that is the stress in tons/sq. in. beyond which Young’s modulus
does not hold) and the increase, in inches x 1072, of the external
diameter, y, of twenty steel tubes subjected to oertg.@\changes in
internal pressure. The calculation of the coefficienbof correlation
follows the same pattern as before, after takmg arbitrary scales
and origing, and the necessary quantities arqgnren in the table.

Table 14.8. Data conoemmg ‘steel tubes
WO, dbrauli:braw org.in

o

@ =10(z—20-6} () "t =10w-7 WP 'y}
20:0 — & 25 ’~1£ 0 50 2,600 . —250
20-0 -5 25 AN\ 116 45 2,025 — 225
19-0 —15 225\ 2.7 —43 1,849 +645
210 5 %‘5 10-0 30 300 +180
22,2 17 \s 78 8 64 +138
19-6 -9 0 92 22 484 —198
216 1O 121 87 17 289 +187
19-1 _1\‘, ) 196 33 —37 1,369 +518
196 o~ -8l 73 3 9 - 27
20-1 \..- 4 16 107 37 1,369 ~148
206 LN 1 1 113 43 1,849 + 43

© 214 29 9 81 11-2 42 1,764 +378
CgdyT -2 144 40 —30 800 +360
o \{31 —14 196 30 — 40 1,800 +560
.29 22 484 38 —32 1,024 —704
219 14 198 60 —-10 100 — 140
19-8 -1 . 49 10-8 - 38 1,444 —266
20-8 1 1 - 110 40 1,600 + 40
21-1 6 36 10:8 a8 1,444 +228
22-2 17 289 26 —dd 1,036 ~ 748
Tot.ala 9 2,561 . 171 24,519 +539

Ia'=9, 2y’ =171,

S@)=2,661, S(y)=24,519,
2=y = 539.
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From these it follows, since # is equal to 20, that
S(x'y") - nEY = 459-35,
Z(a') — nE? = 2556-95,
Sy~ ng?=22,962-55,
- Hence, from equation (14.5)
459-35

= = 0-0600
+/(2556-95)(22,952-55) )
Y4 ' N\
4 O\
O
13 - ) “ "
12 - - - +$7)
. /f \\ “\\
e AN
= e . \
X P \\ 'x..\\.,
_\g 10 - fi" . \\ \\.
/ v
g9k A C
g ! A\ O
S gl ! www.dbraulibraryerg.in
E T ; 2z \\
3 6 - [’ ,lm}\ LI
&M m
é sk \ \
= ] o N/ \
sfle 25 \
.{ :t\": \\
3'_.!::}“ \
s’ ,} . i
TV [ i [ 1 .
.“\u. v 19 20 21 23 23 "~
<\: Yield stress (tons/in.?)

Fig. 14.6. Stoel tube data

The value of » is low, and for 5 sample of twenty is not indicative
of significant correlation between the two variables. However, the
mere caloulation of r disguises an essential feature of the data
which can be seen from an inspection of fig. 14.6, The figure shows
that there is a relationship between z and ¥, but that it is of a
parabolic, not linear, form, The approximate nature of the relation-
ship is indicated by the dotted line. All that the eoefficient of
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correlation is doing is to indicate that the regression line of g on »
is approximately horizontal whilst that of « on y is approximately
vertical. As these two regression lines differ greatly the coefficient
of eorrelation will be extremely low. This example shows that it is
dangerous to caleulate only the coefficient of correlation : some form
of diagrammatic examination of the data should also be made in
order to interpret the association between two measurements.

1411 It must always be remembered that the coefficient of,
correlation merely measures the extent to which high values of one,’
variable are agsociated with high or low values of another variahle.
The fact that the values available show that such an assdciation
exists does not, in itself, imply that one variable ‘causes‘the other,
An illustration of this is given in the following exa,nkple where the
data refer to Great Bnt&m

Table 14.9. Correlation of licencqs‘m fowls
Vehicle licences N8, of fowls

Year _# (thouzands) { jgr {thousands)
1942 wh%?dbrqiﬂjbrar:?“%, in
1943 1,544 N 46,3
1944 1,699\ 50,242
1945 2,608, 56,666
1546 _ 3,113 61,723
1947 £\8,521 64,880
1948 (N 8,734 79,219
1949 N gus 89,152
1960 8 ) 4,414 : 90,789
1951 4,625 90,067

Bzample 146 }]_‘he data in table 14.9 give the number of current
: motor—vebli\de hoenaes, z, and the total number of fowls on
a,gncultural holdings, y, for each of ten successive years. The
coeﬁolent of correlation, r, between z and y can be calculated in
thoviisual manner and the necessary steps are left as an exercise
to the student. The final result gives r= 09566 which is an
extremely significant coefficient. It would be ecompletely erro-
neous, however, to infer that one variable was the cause of the
other, and that by banning motor-cars the population of fowls

- would immediately die off! The fallacy has arisen because both

variables are in fact highly correlated with a third variable, time,
and this is producing the spurious correlation that has been
observed. Such relationships make the interpretation of correla-
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tion coefficients more difficult, and it is always essential to ask
whether or not the two variables concerned do constitute cause
and effect or not, The fundamental concepts involved in the study
of regressions were put forward by 8ir Franeis Galton in the late
nineteenth century when he was studying the relationships that
existed in such physical phenomenas as height and weight between
parents and their children. It has, however, become a technique
that is used in much wider fields, some of which have heen
mentioned in this chapter. O
KoY
EXERCISES O
14.1  The following table gives the marks, =, obtained-ly* students at

an examination in arithmetic at the end of one termypogether with the
mark, g, obtained at the end of the following termi\,

Student @ . Y Student\ WYox 74
1 53 41 107 4 45
2 4 65 28 72 59
3 48 44 AN 48 20
4 71 38 L M0 85 57
5 86 41 RN 80 84
6 6gwrw.dbraglibracy org.ify 40 27

™
*

(¢} Draw a scatter diaggm for these figures.

(b) Find the regressionline for y on « and draw it on the scatter
diagram, ™

(¢) Determine the§stimate of the coefficient of correlation between
the two variables,\

(¢) What is’your estimate of ¢ for a student who obtains a mark of
60 for «, a.gg‘)vha,t is the standard deviation of your estimate?

14.2 1‘% percentage carotene content of wheat, x, and the percentage
caroteas content of the flour produced, y, for ten varieties of wheat
wete piven by Goulden as follows:

h
\ Variety z y Varjety z Y
-1 118 239 . 8 1-25 176
2 213 3-11 7 1-85 210
3 1-41 215 8 1-24 212
4 1-42 1-96 9 " 1-48 2:28
5 150 2402 10 1-35 ' 1-86

{a) Draw s scatter diagram,

(8) Determine the regression line for Y on .

{c) Estimate the percentage carotene content of flour for = equal to
1-72 and give the standard error of the estimate,
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14.3 Calculate the coefficient of correlation between the following
series of male and female mortality rates per 1000 of population:

Male Farnale Male Female
Year rate rate Year rate rate
1935 12-5 11-1 . 1940 16-1 12-9
1936 12-9 314 1941 15-7 118
1937 132 11-7 1942 144 107
1938 125 10-8 1943 15-3 11-3
1939 13-0 11-3 1944 15-3 108

14.4 An investigation was made to determine the manner in which the™\
tensile strength of cement depends upon the curing time. The data.are
due to A. Hald, and after twenty-ons experiments the following results

"N

were obtained for the five different times of curing used. 4
Curing time —_— . N
{daya) Tensile strangth in kg./cm.? O
1 13-0, 13-3, 11-8
2 21.9, 24-5, 24:7
3 29.8, 28-0, 24-1, 24.2, 26-2
7 32-4, 30-4, 34-5, 331 35-7
28 41:8, 42-6, 40:3,(35-7, 37-3

a) Draw a seatter diagram of curj time; #, against tensile strength,
Y, Euzd hence show that there {0ed ngﬁgﬂﬂéﬂiﬁﬁé’ 158 & Hhear relationship
between: the two variables. N :

(b) Change to a new pair of variables z'=1fx and y'=log y. Plot a
scatter diagram of ' against g and verify that there now appears to be
# linear relationship bet“{qeq\the two variables.

{¢} Use the relationship in (b) to find the regreasion line of " on x".

(d) Make an estimpitc of the tensile strength that would result from
a curing time of 15days.
14.5 Tt might be-expected that the prics of crops varies inversely with
the yjeld,.'ga;f:.is, for & year with low yield the price is high and vice

versa. Théfollowing figures give the price of oats and the yield per acre
for tem years. - o
AL Yid  Average Yield  Average
8 per acre  price per acre  prics
{ewt.) 8. d. Year {cwt.) s d.
170 14 0 1945 173 18 3
16-4 14 7 1946 163 16 4
172 15 1 1947 15-2 18 8
187 0 13 9 1948 17-8 21 1
162 - 16 4 1949 184 21 1

3 & (a) --;Ca,.ld-ulate the coefficient of correlation between yield and average
" price. . _ '

.: () Comment on the value of » obtained. Can you account for the
“"valus of r obtained, on grounds other than the supply and demand?
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14.6 The following figures give the weight in grams, », and the length
of the right hind foot in millimetres, y, of a sample of twenty-eight
adult male field-mice,

e ¥ x ¥ z Y
154 22.6 174 222 18-8 21-5

160 22.9 176 224 188 225
18-0 22.6 17-8 221 188 23-2
18:5 22-4 17-9 22.8 19-2 23-0
16-9 235 18-2 22:5 19-4 22.4
16-9 28-3 184 22-4 20-1 235
16:9 21-8 18-6 230 20-4 23-3
170 22-2 18-7 22-9 20-4 2344
17-2 21-9 18-7 239 22.3 2%~
174 21:9 )

Ny

7™ %A
3

(@} Draw a scatter diagram for the data. o\

(¢) Find the regression ling of y on « and draw itdr-on the scatter
diagram, \/

{¢) Estimate the standard deviation, 8,, of the value of y found from
the regression equation. LD

(@) Assuming that the observed values/of'y will be spread as in &
normal distribution around the estimatedy with a standard deviation
of s,, draw two lines parallel to the regression line such that 95 % of
the observations mdght&h&'m@bctqé;ﬁbrgim“ithm the belt so formed.

14.7 The fallowing figures giv;aﬁ the average weekly output of coal
in the United Kingdom and the number of civil servants for twelve
successive quarters in t}:gq‘y&rs 1950-3,

Output of coal 40 ,rh\\ 3 44 46 39 45 43 42 38 47 48
(100,000 tons) O

Civil servants 2480/ 685 679 676 675 680 636 688 634 678 673 668
(1000°s) A,

(@) Calc@até the coefficient of correlation between the two sets of
figures,

(b)-Would you agree that these figures demonstrate that a decrease
i thenumber of civil servants results in an increase in coal production ?

Give reasons for your angwer.

14.8 TFour hundred and twenty-five children were given Binet in-
telligence tests and from the results the intelligence quotients of the
children were caloulated. After an interval of two years the children
were ro-tested and their revised intelligence quotients calculated.

{@) By drawing a graph with the means of the arrays of gecond best
1.Q. against constant first test I.q. see whether the regression is approxi-
mately linear,

(#) Calculate the regression line of 1.q. at second test on the 1.¢.at
the firat test. -
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(o) With what acouracy could the r.Q. at the second test be pre-
dicted from a knowledge of 1.q. at the first test? '

1.g. at firat test (central values}

A

)

- 60 80 100 120 140 160  Totals
280 — - -2 5 6 - 18
E'd (140 — — 1 22 32 2 57
gz J120 — i 26 .79 15 — 121
=g 100 — 23 90 2 — —. 138
2% | 80 2 58 - 24 1 — — 8
g~ Leo 11 B — — — — 16,
2 N
Totals 13 81 . 141 124 52 8 A

14.9 A meagurement, =, on the right claw and & measurenient, y, of
body length was made on each of 565 crabs. - K7, 30
(a) Calculate the regression of y on x. Estimate the"ﬁs&y Iength of
a crab for which  was equal to 6-21 mm. ! S
() Calculate the coefficient of correlation betgv(en’ the two measure-
Measurement @ {in mm.) (qen values) -

— e
10 Totals

ments.

) 4 5 6 7 0\ °8 9

f-3 0 — - R 1 14 5 20
2 EE g — — "@"{V:ffhraulibsery,oa%,in 2 165
gag{r — 8 4N 41— 234
4881 2 8 g B — — — 115

= ;§, ) 1 7’;{'}\13 — - - = 21
Totals LN Ys* 72 198 181 78 T 596

14,10. It is freque’j; 13; agserted that s seaside resort with a record of
low rainfall bada high number of hours of sunshine, Investigate, with
 following figures from Felixstowe, whether years with low

the aid of b@,}o
rainfall have high sunshine by caloulating the coefficient of correlation

betwegﬁfbhe rainfall and the hours of sunshine.

\'\" . Reinfall Sunshine : Rainfall Sunshine

. "Year {in.) (hr.} Year (in.) {hr.}

© 1048 20-6 1650 1049 174 1907

" 1943 16-6 1951 1950 19-0 1629

1944 216 1755 1951 26-2 1714

jods 166 1623 1962 24-5 1727

1048 185 1687 1953 14-6 1521

1947 181 1851 1954 211 1403

‘1948 185 1669 1956 185 1636

Q
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